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Abstract—Nowadays, food companies produce large volumes
of packaged food products to satisfy the demand of a population
that keeps increasing in number. One of the biggest challenges
these enterprises must face is how to scale accurate contaminant
detection methods. In this paper, we improve atop existing
microwave-sensing techniques for food contaminant detection by
adding an ensable of Machine Learning (ML) techniques. We
consider a greater variety of common contaminants in the food
industry with respect to the literature. Moreover, we enhance
the data collection phase and propose a Graph Neural Network
(GNN)-base approach to detect the position of the contaminant.
We show that this enhanced data combined with the proposed
ensemble of ML algorithms outperforms the accuracy of the
detection with respect to the state-of-the-art approaches.

Index Terms—microwave sensing, machine learning, imaging,
graph neural networks, food technology

I. INTRODUCTION

A food company’s reputation relies on customer trust, and
any foreign bodies in packaged products can harm this trust
and brand loyalty. Ensuring consumer health and preventing
food contamination is crucial in multi-stage production pro-
cesses like the food industry [1]. Food contaminant detection
systems, such as X-Ray imagers, metal detectors, etc., are
used to prevent such issues, but they may have limitations,
especially for contaminants with low density. In Tab I, a list
of the most commonly used detection technique is presented,
together with their characteristics and limitations. To address
this problem, a new approach called ML-based Microwave
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Sensing (ML-MWS) is proposed in [2]. Thanks to the use
of Microwave-based sensing, it shows that it is possible to
use Machine Learning algorithms to achieve a high detection
accuracy on some contaminants and to run detection in real-
time. Next, the entire procedure for the development and
deployment of such kind of system has been rigorously defined
in [3]. Another related work [4] introduces a custom neural
pattern recognition network, achieving near-optimal accuracy
with limited features and samples.

Building upon the previous research, this paper aims to
improve detection results by enhancing data collection, us-
ing an ensemble of ML algorithms, and leveraging imaging
techniques to detect the contaminant’s position. Additionally,
the research expands the variety of products considered, lead-
ing to improved detection accuracy across a wider range of
contaminants with fewer samples.

TABLE I
USE CASES AND LIMITATIONS OF DETECTION TECHNIQUES USED IN

MANUFACTURING.

Detection
system

Low-
density

contami-
nants

detection

Need for
trained

operators

Safety
issue for
operators

Ability to
see

through
metal

Microwaves Yes No No No
X-Rays No Yes Yes Yes

Near-Infrared No No No No
Metal Detectors No No No No

Visual Inspection No No No No

II. RELATED WORKS

As per the classification provided by the FDA, the hazards
can be categorised based on their inherent properties; including



physical attributes such as plastic, wood, and glass; chemical
components such as heavy metals; and biological factors
like listeria and salmonella [5]. Physical hazards represent a
threat to consumer well-being and manufacturing equipment
integrity, thus improving their detection constitutes a crucial
element of a comprehensive food safety program. At the
current state, mass spectrometry [6] and Raman spectroscopy
[7] are shown to be effectively combined with ML to assess
the quality of food against adulteration (in white rice in the
cited paper) and to detect food-born pathogens, respectively.
Microwaves have been used to sense the moisture content
in corn in combination with deep neural networks [8], then,
following the successful application of MWI to the medical
imaging field [9], there has been an increasing interest toward
industrial applications of this technique [10]. The authors
of [11] developed a hand-held time-domain reflectometer
working in the microwave spectrum to assess food quality by
measuring variations in the dielectric properties, which can be
determined by a variation of water concentration. As a result
of an industrial implementation [12], a radar-based detection
system reveals the ability to detect foreign bodies such as
wood, plastic, bone, and fruit stones but is fundamentally
different from our approach as it applies to pipes where liquid
food or emulsions can flow before being packaged. Conversely,
in [13] MW sensing is used to detect plastic contaminants in
packaged cheese slices. In this case, a single antenna patch is
used to illuminate the target and the reflected signal is shown
to be sufficiently modified by the contaminant to allow for
easy detection. Such a manageable condition does not apply
in the case study shown in [14], in which the acquired signals
in the contaminated and uncontaminated cases do not exhibit
immediately visible patterns useful for discrimination, hence
requiring further investigation of more efficient techniques for
more automated pattern recognition.

III. BENCHMARK DATASET

In order to improve the ability of the algorithm to detect
contaminants, we decided to broaden the existing dataset on
which the algorithm is based, which was first built in [3]. The
goal was to have a model that is able to adapt to different
products with very different behavior when it comes to their
“dielectric properties”. Therefore, we selected a carbonated
soft drink (soda), a soft drink with low amounts of CO2 (ice
tea), soy sauce, flour and honey. The chosen contaminants
were plastic, paper, wood, glass, aluminum, glue, and cork,
commonly found in packaging according to [1].

To build the machine’s detection efficiency, we initially
scanned uncontaminated products, some of which were opened
and closed to mimic the pressure conditions of contaminated
ones. Then, we proceeded to select the contaminant positions
based on the behavior of the products. For liquids like soft
drinks, contaminants would either float or sink. For higher-
density products like flour, eight different surface, middle, and
bottom positions were considered for measurements (see Tab.
II).

TABLE II
PRODUCTS AND CONTAMINANTS SIZES INCLUDED IN OUR DATASET. (P)
STANDS FOR PAPER CONTAINER WHILE (G) IS FOR GLASS CONTAINER.

Contaminant Product
Soda Flour (P) Flour (G) Honey Soy Tea

Clear 500 100 200 200 300 300
Plastic 160 - 240 80 160 120
Paper - 160 240 - - -
Wood 40 - - - 40 -
Glass 100 - - 80 120 -
Aluminium 140 - - - 60 -
Glue - 160 - - - -
Cork 40 - - - 40 -

Tot 980 420 680 360 680 420

Fig. 1 shows the entire MWS system employed. The MWS
system consists of six PCB-printed monopole antennas ar-
ranged in an arch above the production line, allowing un-
interrupted product flow. Each of the six antennas involved
in the setup is directly connected to a 6-port VNA through
individual ports. Experimental data is gathered by interfacing a
laptop with the VNA, serving as the controller during the data
collection process. To minimize interference and reflections, a
shielding case encloses the antenna arch. The Control Center
is responsible for the activation and the speed of the line.

Fig. 1. Microwave Sensing system utilized in our experiments.

IV. MACHINE LEARNING CLASSIFICATION

Data collection is the first step in the process of ML-
based Microwave Sensing. Next, we apply a ML algorithm for
binary classification, i.e., to detect whether the food product
is contaminated or not. The features used to feed to the ML
algorithm are the same as defined in [2]: a 6 × 6 complex
scattering matrix for 11 evenly spaced frequencies. The mea-
surements are performed in a bandwidth of frequencies that
ranges from 4 to 6 GHz for the flour and from 3 to 5 GHz for
the other products. Since each of these elements is a complex
number with real and imaginary parts, each sample in the



Dataset is a vector of matrix × matrix × frequencies ×
real/imaginary = 6× 6× 11× 2 = 792 features.

A. Issues of previous implementations

The neural network implementation provided in [4] suffers
from some shortcomings. In particular, it does not achieve the
same generalization accuracy on different types of products
and contaminants. Indeed, as anticipated, we extended the
dataset to a larger variety of products and contaminants, and
testing the same network architecture of the work in [15] with
these products, the ML algorithm fails in achieving 100%
accuracy (see Tab. III). As the main goal for food companies
is to avoid contaminated products go to market, it is important
to minimize the number of False Negatives, thus an alternative
ML implementation is here presented.

TABLE III
TEST ACCURACY OF [2] ARCHITECTURE. IN BLUE IS REPORTED THE

RESULT MENTIONED [15].

Product Accuracy FN

Hazelnut-Cocoa Cream 100% 0
Soda 93.9% 10
Flour 100% 0
Honey 100% 0
Soy 95.8% 8
Tea 89.3% 12

B. ML Algorithms comparison

A key goal of this implementation consists in the optimiza-
tion of the time required for both the training procedure and the
classification task, respectively to minimize the “calibration“
time for a novel implementation, and further to support a real-
time processing. A variety of ML algorithms in addition to
Neural Networks were analyzed, to understand which solution
can give the required time performance while also keeping the
highest possible degree of accuracy (See Fig. 2).

Lasso regression implements linear regression with ℓ1-norm
regularization. It outperforms other methods, showing the
importance of regularization. It is a simple model that is
fast to train and can provide real-time predictions. Another
promising algorithms are Ada Boost [16], which exploits
boosting techniques to improve the accuracy of the dataset.
Good methods are also the ensembles like Bagging Trees and
Random Forests. Fig. 2 shows that also a lazy classifier like
k-Nearest Neighbors can reach high accuracy, but suffers from
slow prediction time. To improve the detection accuracy, we
decide to adopt an ensemble of the best methods, since, under
the assumption of independence, we can model the prediction
process as a Binomial distribution, and considering majority
voting we have that error can be reduced thanks to the formula:

P
(
X ≥

⌈n
2

⌉ ∣∣ p = ϵ
)
=

n∑
i=⌈n

2 ⌉

(
n

i

)
ϵi(1− ϵ)n−i < ϵ if ϵ < 0.5

where X is the random variable saying the number of
predictors with error probability ϵ over the total number n

of predictors that give a wrong prediction. Clearly, if ϵ > 0.5
(as seen in Fig. 2), then the error probability of the ensemble
method reduces. So, we choose to use an ensemble of Lasso
and Ada Boost regression, which shows the best performance
(see Tab. IV).

Consider Tab. IV: in terms of accuracy, it is clear that
Lasso classifier is outperforming all other models. It achieves
almost-optimal accuracy in all the considered products. How-
ever, let us strengthen the idea that we prefer to identify as
contaminated some additional good products, if we are able
to reduce the number of contaminated products classified as
intact, in other words, reducing the False Negatives cases. To
do so, let’s take a look at Tab. V. Most algorithms correctly
classify honey and flour. By considering other products, we
have selected the ensemble of Lasso and AdaBoost classifiers
as the best one. The choice of these specific algorithms is
based on both performance and computational reasons. Other
algorithms require too much time to automatically tune the
hyperparameters or provide worse performances. This choice
balances this trade-off.

C. Hyperparameters Tuning and Model Selection

To tune the hyperparameters, we adopted Bayesian Opti-
mization and Grid search methods which helped us to find
the best hyperparameters. Consequently, this approach led
to the development of slightly varied models for different
products included in our study. We adopted nested k-fold
cross-validation to choose the parameters. We use a standard
train-test split of the dataset to train and validate the specific
model (80% train, 20% test).

Fig. 2. Comparison of ROC curves for different ML algorithms on Hazelnut-
Cocoa Cream dataset.

V. CONTAMINANT LOCALIZATION WITH GRAPH NEURAL
NETWORKS

The main scope of inspection devices is to identify con-
taminated samples. But also, knowing extra information about
the contaminant could result in precious information. For
example, the composition and the position of the intrusion
could help in identifying the sources and the reasons for
the contamination.As it can be easily deduced by the matrix
structure of our input signal, our problem can be naturally
interpreted as a graph problem ( [17], [18]): the scattering
matrix S can be seen as the adjacency matrix of a graph
whose nodes vi are represented by electrodes. Graph Neural



TABLE IV
EXPERIMENT RESULTS REPORTED WITH ACCURACY METRIC. OUR

Baseline ARE THE RESULTS REPORTED IN TAB. III. ENSEMBLE IT’S A
COMBINATION OF LASSO AND ADABOOST.

Model Product
Soda Honey Flour (P) Soy Tea

Baseline 93.9% 100% 100% 95.9% 89.3%
Lasso 100% 100% 100% 97.6% 99.0%
AdaBoost 99.0% 99.4% 100% 94.8% 93.3%
Bagging Tree 93.7% 100% 100% 95.8% 84.8%
Decision Tree 94.2% 99.7% 100% 94.2% 81.0%
Random Forest 92.4% 100% 100% 94.2% 82.4%
Naive Bayes 84.4% 100% 99.5% 88.9% 66.7%
1-hidd. layer NN 97.3% 100% 98.8% 96.6% 94.3%
3-hidd. layers NN 96.5% 100% 100% 94.5% 89.0%
Ensemble 99.4% 99.4% 100% 93.5% 96.6%

TABLE V
EXPERIMENT RESULTS OF THE MOST PROMISING METHODS REPORTED

WITH THE NUMBER OF FALSE NEGATIVE OUR Baseline ARE THE RESULTS
REPORTED IN TAB. III. ENSEMBLE IT’S A COMBINATION OF LASSO AND

ADABOOST.

Model Product
Soda Honey Flour (P) Soy Tea

Baseline 10 0 0 8 12
Lasso 1 0 0 7 2
AdaBoost 4 1 0 11 14
Mini-NN 8 0 1 20 10
Deep-NN 24 0 1 22 20
Ensemble 0 0 0 6 0

Networks rely, in general, on a message passing architecture
( [18]), which can be summarized as a weighted diffusion of
a combination of

• Node embeddings, which we will denote as zi
(k) ∈ Rn,

referring to the k − th embedding, resulting from the
k − th message passing iteration, of the i− th node

• Edge embeddings, which we will denote as eij
(k) ∈ Rn,

referring to the k − th embedding, resulting from the
k − th message passing iteration, of the eij edge

• Graph embeddings, which we will denote as z
(k)
G ∈ Rn,

referring to the k − th embedding, resulting from the
k − th message passing iteration, entire graph G

A. Implementation

Our implementation relies on the Pytorch Geometric frame-
work. Let S(t) ∈ M6×6(C) and s

(t)
ij its components, for

t ∈ 0, 1 · · · , 10 representing the 11 acquisitions executed per
measure. Let sij ∈ C11 indicate the vectors containing the
11 measurements of a signal from electrode i by electrode j.
Initial embeddings are produced as follows:

• zi
(0) = zposi ⊕Re(sii)⊕ Im(sii)

• e
(0)
ij = lij ⊕Re(sij)⊕ Im(sij)

with lij being the euclidean distance between electrodes i
and j, and zpos

i being the normalized, 2D polar coordinates
for node i. The message passing architecture is GENconv,
from [19]. A single GENconv layer is utilized to produce the
embeddings. Our architecture performs a double classification

task, producing two distinct output vectors (ycont and ypos)
each normalized with a softmax layer. A custom loss summing
Crossentropy losses for both classification tasks (contaminant
and location) is employed. The datasets are specifically labeled
to encode information about the approximate position of
the contaminant in the container. Depending on the dataset,
different positions are used. The location component is hence
effectively a classification over the possible positions.

B. Results

Models are trained over nested 5-fold Cross Validation on
the training set, for a total of 200 epochs of training for each
step of the Bayesian optimization pipeline (with a total of 50
optimization steps). The final training (on both the previous
validation and training splits) is then 1000 epochs long. The
total data split is hence: Training composed by 64% of the
dataset, while validation is 16% and testing 20%. results can
be seen in Table VI.

TABLE VI
DATASET STATISTICS FOR THE TRAINED GENCONV MODELS. N.positions

REFERS TO THE NUMBER OF POSSIBLE POSITIONS AVAILABLE IN THE
DATASET. N. contaminants REFERS TO THE NUMBER OF DIFFERENT

CONTAMINANTS. MODELS TRAINED ONLY ON CONTAMINANT
CLASSIFICATION HAVE N.A. IN THEIR ASSOCIATED N. positions.

Dataset N. Data N. Positions N.Contaminants Acc.

Soy 620 N.A. 5 95.43%
Tea 420 N.A. 1 81.48%
Flour (G) 680 18 2 98.29%
Flour (P) 420 12 2 89.51%
Soda 980 N.A. 5 89.33%
Honey 360 2 3 94.36%

VI. LIMITATION AND CHALLENGES

The work has some limitations to take into account. Al-
though the system performs well in the laboratory’s MWS
system, its real-world implementation require addressing chal-
lenges such as limited computational resources and diverse
environmental conditions. Indeed, the ML ensemble developed
may not be easily deployed on certain hardware platforms.
The study’s scope of contaminants and food products might
not fully represent what food companies encounter, necessi-
tating additional research and validation as well as different
packaging materials.

VII. CONCLUSION AND PERSPECTIVES

In this study, training and testing alternative ML algo-
rithms on the new dataset that we collected, we demonstrated
that a Lasso Regressor ensemble with Ada Boost can often
outperform the neural networks in contaminants detection.
Additionally, we introduced the utility of GNN for broader
classification tasks and contaminant position reconstruction.
Future research should consider extending the dataset with
additional food products and contaminants, to further reduce
the dataset size used by ML algorithms for detection and to
develop a ML algorithm capable of generalizing to unseen
products and contaminants.
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