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Abstract

Reinforcement Learning is one of the most promising research directions in the field of
Artificial Intelligence. It provides techniques for solving sequential decision-making prob-
lems that satisfy specific properties. In many cases, the presence of an expert, an agent
that knows how to optimally solve the given problem, allows to teach to our agent how
to behave by imitating the expert. Inverse Reinforcement Learning defines a powerful
family of algorithms for solving the Imitation Learning problem. The main idea behind
Inverse Reinforcement Learning is that our artificial intelligent agent can learn not merely
by copying the actions of the expert, but by firstly studying and analyzing the reasons
and the motivations that make the expert behave in that way. In other words, this disci-
pline allows, in specific settings, to retrieve the goal of the expert, and then, to use it to
understand which is the best strategy that our agent can apply in order to achieve that
goal. In most cases, the strategy of the expert and the dynamics of the environment are
not explicitly provided, but they have to be estimated based on expert demonstrations.
In this thesis, we focus on the number of samples that must be collected in order to
solve the Inverse Reinforcement Learning problem in an acceptable way according to a
certain index of performance. The analysis conducted is a worst-case analysis, namely
it aims to compute the minimum number of samples that any algorithm, even the best
one, needs to collect in the worst possible problem instance to provide an acceptable
solution. One main setting is considered that assumes the presence of an oracle that
can provide samples for any possible configuration of states where the agent is located
and actions taken. The results obtained allow to characterize the sample complexity of
Inverse Reinforcement Learning according to the problem definition adopted in this thesis.

Keywords: Inverse Reinforcement Learning, Sample Complexity, Feasible Set, Statis-
tical Learning





Abstract in lingua italiana

L’Apprendimento per Rinforzo è, ad oggi, una delle direzioni di ricerca più promettenti
nell’ambito dell’Intelligenza Artificiale. Esso infatti fornisce tecniche per risolvere speci-
fici problemi in cui un agente deve prendere sequenze di decisioni nel tempo. Spesso, la
presenza di un esperto, cioè un agente che sa come risolvere il problema in maniera otti-
male, ci permette di insegnare al nostro agente come prendere le decisioni semplicemente
imitandolo. L’Apprendimento per Rinforzo Inverso definisce una consistente famiglia di
algoritmi per risolvere il problema dell’Apprendimento per Imitazione. L’idea principale
dell’Apprendimento per Rinforzi Inverso è che il nostro agente può imparare non soltanto
semplicemente copiando le azioni dell’esperto, ma studiando e analizzando le motivazioni
che guidano l’esperto nelle sue decisioni. In altre parole, questa disciplina permette, in
particolari problemi, di recuperare l’obiettivo dell’esperto e poi di usarlo per capire qual
è la miglior strategia che il nostro agente può mettere in pratica per raggiungerlo. In
questa tesi, mi concentro sul numero di campioni che devono essere raccolti per risolvere
il problema dell’Apprendimento per Rinforzo Inverso in maniera accettabile secondo un
certo indice per misurare le prestazioni. L’analisi condotta è un’analisi del caso pessimo,
cioè mira a calcolare il minimo numero di campioni che ogni algoritmo, persino il migliore,
deve raccogliere nell’istanza di problema peggiore per fornire una soluzione accettabile.
La configurazione principale che viene considerata è quella in cui è presente un oracolo
che fornisce campioni per qualsivoglia combinazione di stati in cui l’agente può trovarsi e
azioni che può prendere. I risultati ottenuti permettono di caratterizzare la complessità
campionaria dell’Apprendimento per Rinforzo Inverso secondo la definizione di problema
adottata in questa tesi.

Keywords: Apprendimento per Rinforzo Inverso, Complessità Campionaria, Insieme
di Rinforzi Accettabili, Apprendimento Statistico
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1| Introduction

1.1. General Overview

Inverse reinforcement learning (IRL) is the problem of inferring the reward function of
an agent, given its policy or observed behavior [2]. Given a certain Markov Decision
Process [45] without reward function, along with a certain expert policy, IRL aims to
compute a specific reward function which is feasible (namely, the expert policy is optimal
in the MDP with such reward function) and satisfies specific properties. IRL, along with
Behavioral cloning (BC), is one of the techniques we can use for solving the imitation
learning problem, namely the problem of efficiently learn a desired behavior by imitating
an expert’s behavior [43]. Similarly to the forward Reinforcement Learning setting [51],
it is crucial to efficiently explore the environment and collect the minimum amount of
samples that allows solving the problem [26]. In the context of PAC learning [21], we talk
about sample complexity to refer to this concept.
The research topic concerns the complexity of solving a problem when some parameters
are not known, but they have to be sampled. Collecting samples can be a difficult task,
for two reasons. We might need to devise a sampling strategy and we have to understand
the number of samples we need to solve the problem in an acceptable way according to a
certain performance index. In particular, the research topic focuses on the computation
of lower and upper PAC bounds on the sample complexity of such problem analogously
to what can be found in the literature for the forward RL problem (like [5, 12]).
The problem of the thesis concerns the PAC sample complexity of estimating the feasible
set [39] of an IRL problem. However, we will not consider, as estimation error, the distance
between the inferred (at the subsequent RL step) policy and the true policy like in [36, 39],
but we will focus on the straightforward Hausdorff distance between the estimated set and
the true feasible set. As a metric between functions, we will use the max norm for the
generative case. The reasons behind this choice concern the complexity of the considered
problem. If we use a generative sampling model, we can reach any ps, aq pair, thus we
can provide max-norm guarantees, while with a forward sampling model we might not be
able to do so.
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1.2. Motivations

The research topic has both a theoretical and practical importance. With regards to the
former, it allows to characterize the complexity of the IRL problem from the point of
view of the number of samples necessary to solve it in an acceptable way. We might
then compare the complexity to the forward RL problem and see which of them is easier.
Moreover, having a lower bound might help to assess the performance of existing and
new algorithms. Considering the latter, PAC analysis allows us to propose algorithms
which are PAC optimal and therefore it would allow us to devise algorithms with worst-
case theoretical guarantees. Finally, let us remark that IRL has currently a practical
importance, but it has not been understood in-depth from a theoretical point of view.
Up to now, IRL researchers have focused on proposing algorithms for computing only one
specific feasible reward function that satisfies certain properties. Once obtained a reward
function, the next step is straightforward. To perform forward RL in the MDP with
such reward to determine a policy to use on our agent (which has now learned from the
expert). However, few works have focused on the estimation of the entire feasible set, and
in particular on the complexity of doing so. If we were able to characterize such estimation
problem, then new IRL algorithms might be devised atop such basic estimation problem,
and the PAC framework is a powerful tool for characterizing it. This is why the problem
faced in this thesis is important.

1.3. Goals

The main goals of this work concern the development of lower and upper bounds to
the sample complexity of inverse reinforcement learning, where the IRL problem is here
defined as the problem of computing a set of reward functions instead of a single function.
The objective is to better characterize the complexity of IRL from a statistical viewpoint
and to help the RL community to better understand this problem from a theoretical
perspective. Therefore, there will not be made references to practical applications nor to
implementations of the contents discussed in this thesis.

1.4. Contributions

The main contributions concern the definition of a Lipschitzian framework for IRL along
with a thorough description of its limits, the development of a novel lower bound and the
analysis of an algorithm to obtain an upper bound to the sample complexity that matches
the lower bound up to logarithmic factors.
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1.5. Structure of the Thesis

The thesis is structured in the following way:

Chapter 2 We present the notation adopted in the thesis and then foundational no-
tions concerning Reinforcement Learning, like Markov Decision Processes, Dynamic
Programming and some RL algorithms present in literature, Inverse Reinforcement
Learning, showing its similarities and differences to Behavioral Cloning in the con-
text of Imitation Learning, and the Probably Approximately Correct (PAC) Learning
framework.

Chapter 3 Here, we present the state-of-the-art literature concerning the sample com-
plexity of Bandits, Reinforcement Learning and Inverse Reinforcement Learning. A
different section is dedicated to each topic.

Chapter 4 In this chapter we define a Lipschitz framework for Inverse Reinforcement
Learning, clearly defining the setting and thoroughly analysing its limitations.

Chapter 5 This chapter contains the definition of the PAC framework in which we de-
velop the bounds.

Chapter 6 The main theorem with the lower bound result along with its proof is pre-
sented in this chapter.

Chapter 7 We introduce the Uniform-Sampling Algorithm and we analyze it to obtain
the upper bound result.

Chapter 8 This last chapter concludes the thesis. Here we sum up the results, draw
some conclusions and propose future extensions.

Appendix The appendix contains a lower bound in a slightly different setting and some
technical lemmas.
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2.1. Notation

In this section we introduce the notation that will be adopted for the rest of the thesis.

Let a, b P N with a ď b, we denote with Ja, bK :“ ta, . . . , bu and with JaK :“ J1, aK. Let X
be a set, we denote with ∆X the set of probability measures over X . Let Y be a set, we
denote with ∆X

Y the set of functions with signature Y Ñ ∆X . Let pX , dq be a (pre)metric
space, where X is a set and d : X ˆ X Ñ r0,`8s is a (pre)metric.1 Let Y ,Y 1 Ď X be
non-empty sets, we define the Hausdorff (pre)metric [48] Hd : 2

X ˆ2X Ñ r0,`8s between
Y and Y 1 induced by the (pre)metric d as follows:

HdpY ,Y 1
q :“ max

"

sup
yPY

inf
y1PY 1

dpy, y1
q, sup

y1PY 1

inf
yPY

dpy, y1
q

*

. (2.1)

2.2. Reinforcement Learning

Reinforcement Learning (RL) is a concept that Computer Science and, in particular,
Artificial Intelligence (AI), have borrowed from Psichology. It refers to the learning ca-
pabilities of animals of learning how to behave in specific circumstances without being
taught by someone, but simply by interacting with the environment and changing the
behavioral policy based on specific signals received after the interaction. Such signals
are called reinforces, and can be positive or negative, which means that the action taken
has brought to something good or, respectively, bad to the agent. In the context of AI,
the notion of RL becomes that of a set of techniques and algorithms for solving Markov
Decision Processes (MDP).
This chapter will firstly introduce the notion of MDP, highlighting its main features and
properties, defining what it means to solve an MDP, and then move to an introduction
to the Dynamic Programming techniques adopted for solving an MDP. Finally, in the

1A premetric d satisfies the axioms: dpx, x1q ě 0 and dpx, xq “ 0 for all x, x1 P X . Any metric is
clearly a premetric.
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last section, we will introduce the main RL algorithms for solving an MDP both in the
discrete and continuous case.

2.2.1. Markov Decision Processes

Let us introduce the main concepts of RL from a high-level point of view, following the
presentation in [51], by defining them intuitively, and then formally. Let us consider
an agent, that is, any instance, person, computer program, that takes actions, and let
us put it into an environment, any surrounding with which the agent interacts during
time. The situation is really general, and every sequential decision-making problem can
be formalized in this way. In other words, every time we observe something or someone
that has to take a sequence of decisions during time, we can model it as an agent in an
environment. The idea is that the agent is located in a certain state, which is a general
concept representing whatever information is available to the agent about the environment
[51]. The agent has a goal, and he can achieve it by taking decisions, called actions,
which influence the environment. So, to sum up, there is an agent, located in a certain
environment, that has a goal to achieve. He can reach it by taking actions during time
that allow it to move from a state to another. In RL, it is assumed that every time the
agent takes an action, the environment responds by sending a reinforcement signal, called
reward, to the agent. To exemplify, let us think to the situation in which there is a dog,
the agent, located inside an house with some people, the environment. The dog might be
in the situation in which a person tells it "sit", which represents a state. In such situation,
called decision epoch in [45], the dog has to take a decision, which might be to actually
sit down or not. We might think that in case it sits down, the person (environment) will
award the dog with a biscuit, while in the opposite case it will not. In RL, we make the
assumption that every goal can be entirely described in terms of rewards, and therefore
that the goal of our RL agent, the dog, is to maximize the sum of the rewards it will gather
over time, namely the amount of biscuits it will receive. There are two main settings that
are usually studied, the γ-discounted infinite-horizon and the finite-horizon ones. We will
provide background concepts and results for both the settings during the thesis. Formally,
we can define a γ-discounted infinite-horizon Markov Decision Process (MDP) as:

Definition 1 (Discounted infinite-horizon Markov Decision Process). An MDP can be
defined as a tuple xS,A, p, R, γ, µy, where S (S :“ |S|) is the set of states, A (A :“ |A|)
is the set of possible actions of the agent, p is the transition model, namely a conditional
probability distribution over the next state reached by the agent given the previous state
and the action taken; in symbols: p P ∆S

SˆA. Next, there is R : S ˆ A Ñ r´1, 1s2,

2For the sake of simplicity and w.l.o.g., we restrict to reward functions bounded by 1 in absolute
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the reward function, which represents the expected reward obtained when taking action
a P A from state s P S, Rps, aq. µ P ∆S is the initial state distribution, the distribution
representing the initial state in which the agent is found. Finally, γ P r0, 1s is the discount
factor, which represents the importance the agent gives to the rewards obtained far from
the current time instance.

With regards to the finite-horizon MDPs, we have:

Definition 2 (Finite-horizon Markov Decision Process). A finite-horizon Markov Deci-
sion Process is as the tuple xS,A, p, r,H, µy, where the meaning of most symbols is the
same of those presented in the discounted setting. H is the horizon, the number of time
steps for which the agent has to take decisions. However, the reward function and the
transition model can now vary with time, thus we write that p “ pphqhPJHK is the transi-
tion model, where for every stage h P JHK we have ph P ∆S

SˆA, and that r “ prhqhPJHK,
where for every stage h P JHK we have rh : S ˆ A Ñ r´1, 1s, for the time-inhomogeneous
case (when p and r change with time). Instead, for the time-homogeneous setting, the
definitions are the same of the infinite-horizon one.

Another definition that will be useful later is that of time-inhomogeneous finite-horizon
Markov decision process without reward (MDP\R), defined as a 5-tuple M “ xS,A, p,H, µy

with usual definitions. An MDP\R is time-homogeneous if, for every stage h P JH ´ 1K,
we have ph “ ph`1 a.s.; in such a case, we denote the transition model with the symbol p
only. We can define the return of the agent as:

Definition 3 (γ-discounted return). The γ-discounted return can be defined as the cumu-
lative discounted sum of reward received during time starting from the current time step:

vt :“ rt`1 ` γrt`2 ` . . . “
`8
ř

k“0

γkrt`k`1, where rt`1 :“ Rpst, atq @t.

In the finite-horizon case:

Definition 4 (Finite-horizon return). The return is defined in this case as v :“ r1 ` r2 `

. . . ` rH “
H
ř

t“1

rt.

However, we have not defined the concept of solving an MDP yet. To do so, we have
to introduce the notion of policy, which is the behavior of the agent, what makes the
agent decide which action to take at every decision epoch (time step). A policy can be of
various types depending on whether it satisfies the Markovian property and if it changes
with time. Formally:

Definition 5 (policy). A policy π is a probability distribution over actions given the

value.
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current state or the past history. Depending on its properties, the policy can take on
various names.

There are various kinds of policy:

Markovian/History-dependent if it depends only on the current state π P ∆A
S then

it is Markovian, otherwise it is history-dependent;

Deterministic/Stochastic if the policy assigns always probability 1 to a certain action
and 0 to the others, then it is called deterministic, otherwise it is called stochastic;

Stationary/Non-Stationary if the policy does not change with time, then the policy
is stationary, otherwise it is called non-stationary.

In the finite-horizon setting, the agent’s behavior can be modeled with a time-inhomogeneous
policy π “ pπhqhPJHK where for every stage h P JHK, we have πh P ∆A

S . Let us in-
troduce two useful operators. Let f P RS and g P RSˆA, we denote with phfps, aq “
ř

s1PS phps1|s, aqfps1q and with πhgpsq “
ř

aPA πhpa|sqgps, aq the expectation operators
w.r.t. the transition model and the policy, respectively. Notice that in the following, un-
less explicitly stated, we will focus on the case of stationary and Markovian policies. We
can finally define what we mean when we tell about solving an MDP:

Definition 6 (Solving an MDP). Given an MDP (of any of the two kinds defined above),
we can solve it if we find the optimal policy π˚, the behavior of the agent that maximizes
the expected return over time: π˚ P argmax

πP∆A
S

Eπrvs.

In the previous definition, we have talked about expected return; it can be interpreted as
the utility of a certain state or of a certain state-action pair. It is necessary to introduce
two functions, the state-value function V π of policy π and the action-value function
Qπ of policy π which represent respectively the notion of utility of a state and of a state-
action pair. Notice that from now on we provide the definitions only for the case of a
discounted infinite-horizon MDP, neglecting those for the finite-horizon case.

Definition 7 (State-value function). Given an MDP and a policy π, the state-value func-
tion of a state is the expected return of the agent when it starts from the state and it
follows the policy π: V πpsq :“ Eπrvt|st “ ss.

Definition 8 (Action-value function). Given an MDP and a policy π, the action-value
function of a state-action pair is the expected return of the agent when it starts from the
state and playes the action and then it follows the policy π: Qπps, aq :“ Eπrvt|st “ s, at “

as.
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A useful notation for the state-value (V-) function and the action-value (Q-) function is
the following. We denote the Q-function under reward r and policy π as Qπp¨; rq “

pQπ
hp¨; rqqhPJHK, which represents the expected sum of rewards collected starting from

ps, a, hq P S ˆ A ˆ JHK and following policy π thereafter:

Qπ
hps, a; rq :“ E

π

«

H
ÿ

l“h

rlpsl, alq|sh “ s, ah “ a

ff

,

where Eπ denotes the expectation w.r.t. π, i.e., ah „ πhp¨|shq for every stage h P Jh,HK.
We define analogously the V-function V πp¨; rq “ pV π

h p¨; rqqhPJHK. The advantage function
Aπ

hps, a; rq “ Qπ
hps, a; rq ´ V π

h ps; rq represents the relative gain of playing action a P A
rather than following policy π in the state-stage pair ps, hq. This notation is defined
for the finite-horizon setting, but can be easily adapted to the infinite-horizon one, by
removing the dependence on h from the functions. Given their sequential nature, these
functions are often written decomposed using the Bellman expectation equations:

V π
psq “ Eπrrt ` γV π

pst`1q|st “ ss “
ÿ

aPA
πpa|sq

´

Rps, aq ` γ
ÿ

s1PS
pps1

|s, aqV π
ps1

q

¯

and
Qπ

ps, aq “ Eπrrt ` γQπ
pst`1, at`1q|st “ s, at “ as

“ Rps, aq ` γ
ÿ

s1PS
pps1

|s, aq
ÿ

a1PA
πpa1

|s1
qQπ

ps1, a1
q,

where these definitions hold for the infinite-horizon setting. From now on, we will avoid
to specify the setting when clear from the context. A policy π induces a Markov Reward
Process, i.e. an MDP without actions, for which the Bellman expectation equation of the
state-value function can be written in matrix form:

V π
“ Rπ

` γP πV π
ðñ V π

“ pI ´ γP π
q

´1Rπ,

where Rπ, P π, V π represent the corresponding expected matrix operators with respect
to π. The Bellman expectation equations allow to introduce some operators, called the
Bellman operators, one for the state-value function and the other for the action-value
function:

Definition 9 (Bellman operator for V π). The Bellman operator T π for the state-value
function V π is a mapping T π : R|S| Ñ R|S| that maps value functions to other value
functions:

pT πV qpsq :“
ÿ

aPA
πpa|sq

´

rps, aq ` γ
ÿ

s1PS
pps1

|s, aqV ps1
q

¯

@V, @s P S.
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It should be remarked that the value function V π is the fixed point of such operator. With
regards to the action-value function, we have:

Definition 10 (Bellman operator for Qπ). The Bellman operator T π for the action-value
function Qπ is a mapping T π : R|SˆA| Ñ R|SˆA| that maps action-value functions to other
action-value functions:

pT πQqps, aq :“ rps, aq ` γ
ÿ

s1PS
pps1

|s, aq
ÿ

a1PA
πpa1

|s1
qQps1, a1

q @Q, @ps, aq P S ˆ A.

Again, similarly to the state-value function, we can notice that the action-value function
Qπ is the fixed point of the Bellman operator. It is clear that, by definition, both the
value functions depend on the policy adopted by the agent. Among all the policies, we
have seen that the goal of any RL learner is to find the policy that maximizes the expected
return, thus that maximizes the value functions. It can therefore be useful to define the
value that both the value functions achieve under the optimal policy.

Definition 11 (Optimal state-value function). The optimal state-value function is the
state-value function of the optimal policy, i.e. the maximum state-value function over all
the policies:

V ˚
psq :“ max

πP∆A
S

V π
psq @s P S.

Definition 12 (optimal action-value function). The optimal action-value function is the
action-value function of the optimal policy, i.e. the maximum action-value function over
all the policies:

Q˚
ps, aq :“ max

πP∆A
S

Qπ
ps, aq @ps, aq P S ˆ A.

It should be noticed that, once that the optimal value function is known, the MDP can be
considered solved since it allows to retrieve an optimal policy (under certain conditions
that will be presented later). They are of extreme importance the Bellman optimality
equations, which are the corresponding of the Bellman expectation equations in the case
we consider the optimal policy. Indeed, the unique fixed point of such equations are the
optimal value functions:

Definition 13 (Bellman optimality equation for the state-value function).

V ˚
psq “ max

aPA
Q˚

ps, aq “ max
aPA

!

rps, aq ` γ
ÿ

s1PS
pps1

|s, aqV ˚
ps1

q

)

.
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Definition 14 (Bellman optimality equation for the action-value function).

Q˚
psq “ rps, aq ` γ

ÿ

s1PS
pps1

|s, aqV ˚
ps1

q “ rps, aq ` γ
ÿ

s1PS
pps1

|s, aqmax
a1PA

Q˚
ps1, a1

q.

Based on these equations, we can define the Bellman optimality operators analogously to
the Bellman expectation operators:

Definition 15 (Bellman optimality operator for V ˚). The Bellman operator T ˚ for the
optimal state-value function V ˚ is a mapping T π : R|S| Ñ R|S| that maps value functions
to other value functions:

pT ˚V qpsq :“ max
aPA

!

rps, aq ` γ
ÿ

s1PS
pps1

|s, aqV ps1
q

)

@V, @s P S.

Definition 16 (Bellman optimality operator for Q˚). The Bellman operator T ˚ for the
optimal action-value function Q˚ is a mapping T π : R|SˆA| Ñ R|SˆA| that maps action-
value functions to other action-value functions:

pT ˚Qqps, aq :“ rps, aq ` γ
ÿ

s1PS
pps1

|s, aqmax
a1PA

Qps1, a1
q @Q, @ps, aq P S ˆ A.

Both the pairs of Bellman operators defined satisfy some important properties, which is
worthy to mention here:

Monotonicity given any pair of vectors f1, f2 such that f1 ĺ f2
3, we have that:

T πf1 ĺ T πf2 and T ˚f1 ĺ T ˚f2,

in other words, the Bellman operators preserve the monotonicity.

Max-Norm Contraction (Lipschitz continuity) given any pair of vectors f1, f2, it
holds that:

||T πf1 ´ T πf2||8 ď γ||f1 ´ f2||8 and ||T ˚f1 ´ T ˚f2||8 ď γ||f1 ´ f2||8.

Value function convergence for any vector f P R|S| and any policy π it holds that:

lim
kÑ`8

pT π
q
kf “ V π and lim

kÑ`8
pT ˚

q
kf “ V ˚.

3Symbol ĺ denotes element-wise ordering.
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2.2.2. Dynamic Programming

This and the following sections present some algorithms for the computation of the optimal
policy. As explained in [54] and [51], we can identify two kinds of methods for solving the
RL problem:

Dynamic Programming techniques include algorithms that compute the optimal pol-
icy only in the tabular case, i.e., in case both the state and action spaces are finite,
and a perfect model of the environment is provided. Broadly speaking, these are
techniques that can be applied only when the transition model p is completely
known, hypothesis not always guaranteed, and when S and A are finite and small,
since they are rather expensive;

Reinforcement Learning algorithms that can solve the problem even in the most gen-
eral case, with even continuous state-action space, without model of the environ-
ment.

The former techniques are presented in this section, while the latter are presented in the
next section. It should be remarked that a trivial way for finding the optimal policy
might be to enumerate all the possible deterministic Markovian policies, evaluate each
of them and finally retrieving the best one (but this has an exponential computational
complexity). This can be done only in the tabular case. If we define the ordering between
policies with:

Definition 17 (Ordering between policies). We can define an order relation ě among
policies by exploiting the corresponding value functions:

π1 ě π2 if V π1 ľ V π2

Then the guarantee that an optimal policy can be found among the deterministic Marko-
vian policies (for the discounted infinite-horizon case) is provided by the following theorem:

Theorem 1 (MDPs and Optimality). For any discounted infinite-horizon Markov Deci-
sion Process:

• there exists an optimal policy π˚ that is better than or equal to all the other policies:
π˚ ě π @π P ∆A

S ;

• All optimal policies achieve the optimal value function: V π˚

“ V ˚;

• All optimal policies achieve the optimal action–value function: Qπ˚

“ Q˚;
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• There is always a deterministic optimal policy for any MDP, and it can be obtained
by maximizing the optimal action-value function:

π˚
pa|sq “

$

&

%

1 if a P argmax
a1PA

Q˚ps, a1q

0 otherwise
.

One of the fathers of Dynamic Programming is R. Bellman [7]. Such methodology is
widespread and can be applied to all the problems which possess an optimal substructure
and overlapping subproblems.
Finally, let us conclude this introduction to Dynamic Programming techniques by stating
that there are two kinds of RL problems, one which aims to find the optimal policy, and it
is the problem considered thus far, and the other one aims to determine the value function
of a given policy:

Definition 18 (Prediction problem). A prediction problem is a problem that, given an
MDP and a policy π, aims to compute the value function of π in the MDP: V π.

Definition 19 (Control problem). A control problem is a problem that, given an MDP,
aims to compute the optimal value function V ˚ and the optimal policy π˚.

For the finite-horizon case, the optimal policy is non-stationary and can be computed by
backward recursion. Starting from the last time step, choosing at each decision epoch the
action that maximizes the value function from now on. The cost is H|S ˆ A|. This is
clearly an application of Dynamic Programming, given the structure of the problem.

Policy Iteration

Policy Iteration refers to one technique of determining the optimal policy of an MDP,
and therefore of solving the control problem, when the MDP is completely known (its
transition model and reward function are, in particular, known). It consists of iteratively
alternating between the two tasks of policy evaluation and policy improvement.
Policy evaluation refers to any technique adopted for solving the prediction problem, i.e.,
given a policy, computing its value function. There are many ways for doing so if the
MDP is known. One method consists in solving the system of linear equations that arises
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from the Bellman expectation equation:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

V πps1q “
ř

aPA
πpa|s1q

´

rps1, aq ` γ
ř

s1PS
pps1|s1, aqV πps1q

¯

V πps2q “
ř

aPA
πpa|s2q

´

rps2, aq ` γ
ř

s1PS
pps1|s2, aqV πps1q

¯

. . .

V πps|S|q “
ř

aPA
πpa|s|S|q

´

rps|S|, aq ` γ
ř

s1PS
pps1|s|S|, aqV πps1q

¯

.

However, this method is quite computational expensive, therefore it is often preferred to
evaluating a policy with the iterative application of the Bellman expectation equation.
Remembering the properties of the Bellman operators presented in section 2.2.1, we see
that every time we apply the Bellman expectation operator T π to any function V P R|S|,
we are reducing its distance from the value function V π of policy π. The application of
the operator to the function in a state is called backup, and the application to all the
states is called sweep. Given that we are performing a backup to every state before
again applying the operator to certain state, we say that we are performing synchronous
backups.
What we want is a way for moving from a policy π1 to a policy π2 such that π1 ď π2.
This can be achieved through the policy improvement theorem.

Theorem 2 (Policy Improvement Theorem). Let π and π1 be any pair of deterministic
policies such that Qπps, π1psqq ě V πpsq @s P S. Then the policy π1 must be as good as,
or better than π: V π1

ľ V π.

Therefore, given a policy π with value function V π and action-value function Qπ, we can
improve if we act greedily, namely if we take in every state the action that maximizes the
action-value function: π1psq P argmax

aPA
Qπps, aq.

It should be now clear the functioning of policy iteration. Starting from any policy, we
evaluate it, then we improve it by acting greedily, then we evaluate the new policy and
so on. As Sutton and Barto highlight in their book [51], because a finite MDP has only
a finite number of policies, this process must converge to an optimal policy and optimal
value function in a finite number of iterations. It should be remarked that, during the
policy evaluation step, we do not need to converge to the actual value function, but we
can approximate it. In such case the method is called Generalized Policy Iteration.
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Value Iteration

The idea behind Value Iteration is straightforward. Given that the application of the
Bellman expectation operator of a policy π makes any vector (function) converge to the
value function of π, and since the same property holds also for the Bellman optimality
operator, we can apply it directly. Again, we are using synchronous backups and again
we converge to the optimal policy for discounted infinite-horizon problems. Notice that,
differently from policy iteration, now some value functions (of intermediate steps) might
not correspond to any policy. However, convergence is asymptotically as opposed to Policy
Iteration.

Linear Programming

Although Linear Programming defines a different technique from those of Dynamic
Programming, we have decided to include it here because, similarly to Dynamic Pro-
gramming techniques, it requires a complete knowledge of the MDP in order to be applied.
Simply, there is a theorem that states that the control problem can be solved by finding
the solution of a certain linear program:

Theorem 3 (Infinite-horizon Linear Programming). Given a γ-discounted infinite horizon
MDP xS,A, P, R, γ, µy, we can formalize the problem of computing the optimal value
function V ˚ as a linear program:

min
V PR|S|

ÿ

sPS
µpsqV psq

s.t. V psq ě Rps, aq `
ÿ

s1PS
pps1

|s, aqV ps1
q @s P S, @a P A

Then, V ˚ is the solution of this LP (Linear Program).

The original formulation of LP for solving MDPs in the discounted infinite-horizon case
was introduced in [13]. The LP above has |S| variables and |SˆA| constraints. Given that
the model is known, once that V ˚ is found, the optimal policy can easily be computed.
As all the LPs, it admits a dual formulation provided by the following program:

max
dPR|SˆA|

ÿ

ps,aqPSˆA

dps, aqRps, aq

s.t.
ÿ

a1PA
dps1, a1

q “ µps1
q ` γ

ÿ

ps,aqPSˆA

dps, aqpps1
|s, aq @s P S

dps, aq ě 0 @s P S, @a P A



16 2| Background

Thanks to Theorem 6.9.1 of [45], if we define the policy π̄pa|sq :“ dps,aq
ř

a1PA
dps,a1q

, then variable

d can be interpreted as the discounted occupancy measure of π̄:

dps, aq “

8
ÿ

t“0

γtPpst “ s, at “ a|µ, π̄, P q.

Clearly, the objective coincides with the dot product xd,Ry, which is the expected dis-
counted sum of rewards, and this is why we aim to maximize it. The constraints simply
ensure that d has the meaning described above. The optimal policy can be obtained
by deterministically choosing in each state the action with maximal occupancy measure:
π˚psq P argmax

aPA
dps, aq. In the worst case, LP has better computational guarantees than

dynamic programming, but in practice becomes impractical with a smaller number of
states.

2.2.3. Reinforcement Learning

RL techniques are necessary every time that the true MDP is either unknown or too
complex (e.g. state-action space continuous). In such cases, Dynamic Programming tech-
niques, which are expensive and usually provide exact solutions, cannot be applied. In-
stead, RL algorithms are less computationally expensive and can deal with these problems
with various tricks. Reinforcement Learning techniques can be described from different
point of views, by using the characteristics listed below:

Model–free vs Model–based An algorithm is Model-based when it keeps an estimate
p̂ of the transition model p, and, then, uses the model for solving the prediction
or control problem. In other words, it builds a model from the experience, and
then plans the policy or computes the value function from the model. An algorithm
which is not Model-based is called Model-free, and simply tries to plan the policy
or compute the value function directly from the experience;

On–policy vs Off–policy According to [51], On-policy methods attempt to evaluate or
improve the policy that is used to make decisions, whereas off-policy methods evaluate
or improve a policy different from that used to generate the data;

Online vs Offline An Online method performs the learning while exploring the envi-
ronment, in an online manner; therefore, it collects a datum, adjusts its parameters,
then collects another datum, and so on. Instead, an Offline method simply uses a
batch of data previously collected for the learning, and does not interact with the
environment anymore;
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Tabular vs Function Approximation According to [51], a Tabular Method can be
applied to MDPs in which the state and action spaces are small enough for the
approximate value functions to be represented as arrays, or tables. In other words,
we can afford to store a different value for every state-action pair. When this is
not feasible, and, therefore, we are forced to approximate the table with a function,
then, the method is said to be a Function Approximation method;

Value–based vs Policy–based vs Actor–Critic This distinction is made for identi-
fying what is actually being approximated. In the case of Value-based methods, we
perform function approximation of the (action-) value function; instead, when the
method is Policy-based, we approximate the policy, thus we aim to learn a paramet-
ric policy. Usually, we call Critic the component that updates the set of parameters
of the value function, and Actor the component that updates the parameters of the
policy. Therefore, an Actor-Critic algorithm approximates both the value function
and the policy.

This section starts by presenting the most used tabular methods in Subsection 2.2.3, then
it moves to present value-based methods, then policy-based methods.

Tabular methods

As aforementioned, these methods can be used in "simple" problems, and in many cases
they can find optimal solutions. We will present the two most widespread methods,
Monte-Carlo RL (MC) and Temporal Difference RL (TD).

Monte-Carlo Reinforcement Learning Monte-Carlo methods are powerful methods
that can address both the prediction and the control problem. Before looking at the
technicalities of the methods, it is better to clearly define all the assumptions and the
problem they aim to solve. It should be remarked that the environment is not known
here, but can only be explored. Exploration produces experience, which can be seen as a
sequence:

xs1, a1, r1, s2, a2, r2, . . . y,

which might be unlimited, and, in such case, requires online learning algorithms. Such
sequence is called a trajectory. However, we restrict here to cases in which the MC
algorithm has some sample finite-length trajectories available, which can be collected
previously (and thus provided as a batch) or in an online manner. The idea is that
MC uses such experience to solve the prediction or control task. MC does not estimates
the model, but uses directly the collected experience; in other words, it is a model-free
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Input: A policy π to be evaluated
Output: An estimate of V π

Initialize: V P R|S| arbitrarily, returnspsq Ð empty @s P S ; /* An empty list */
while not all episodes generated do

Generate an episode using π
for each state s in the episode do
R Ð return following the first occurrence of s
V psq Ð averagepReturnspsqq

end for
end while

Algorithm 1: Monte-Carlo First Visit

method. Moreover, it learns from complete episodes, i.e., it uses trajectories as a whole,
and does not update the estimates before the end of a trajectory. Let us consider the
following definition of bootstrapping, taken from [51]: We call Bootstrapping the general
idea of updating estimates on the basis of other estimates. For instance, we can say that
some DP methods (e.g. policy iteration) perform bootstrapping since they update some
estimates (of the policy) based on other estimates (of the value function). MC is a method
that does not perform bootstrapping, while TD, presented in the next section, does. Let
us now define MC for episodic tasks.
It relies on the idea of estimating the value function through its sample mean, i.e. given
in general n realizations x1, x2, . . . , xn

i.i.d.
„ X of a certain random variable X, the idea of

MC is to estimate the expected value of X through its sample mean:

X̂ “
1

n

ÿ

iPrns

xi.

Thus, given N sample trajectories of length H (the horizon of the episode) collected under
a policy π:

τ1 “ xs1,1, a1,1, r1,1, s1,2, a1,2, r1,2, . . . , s1,H , a1,H , r1,Hy

τ2 “ xs2,1, a2,1, r2,1, s2,2, a2,2, r2,2, . . . , s2,H , a2,H , r2,Hy

. . .

τN “ xsN,1, aN,1, rN,1, sN,2, aN,2, rN,2, . . . , sN,H , aN,H , rN,Hy

to solve the prediction problem, we can implement MC in the so-called First-Visit ver-
sion, which estimates V π, the value function, defined as the expected value of the return,
with its sample mean, by averaging the returns only of the first occurrence of the con-
sidered state in a sample. Instead, MC Every-Visit uses all the occurrences of every
sample trajectory. The algorithms’ pseudocodes as presented in [51] are given in Alg. 1
and Alg. 2. In this way, we are able to explore the environment using policy π, and
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Input: A policy π to be evaluated
Output: An estimate of V π

Initialize: V P R|S| arbitrarily, returnspsq Ð empty @s P S ; /* An empty list */
while not all episodes generated do

Generate an episode using π
for each state s in the episode do

for each occurrence of state s in the episode do
R Ð return following the first occurrence of s
Append R to Returnspsq

V psq Ð averagepReturnspsqq

end for
end for

end while

Algorithm 2: Monte-Carlo Every Visit.

then to estimate its value function. Notice that this setting can work for both discounted
and undiscounted episodic MDPs. It should be noticed that MCFV (Monte-Carlo First-
Visit) provides unbiased estimates, while MCEV (Monte-Carlo Every-Visit) is biased but
consistent. Notice also that this is an On-Policy method, since we are estimating the
policy with which we are exploring the environment. An efficient way for implementing
the methods is by computing the means incrementally, i.e. with the formula:

V̂t Ð V̂t´1 `
1

t
pv ´ V̂t´1q,

where v is the return, so that we can get rid of the samples once used. With regards to
the control problem, we can realize that, in absence of the model (the transition model
p), we are not able to recover the optimal policy π˚ from the optimal value function V ˚.
Indeed, we are missing some information:

π˚
psq P argmax

aPA

!

rps, aq ` γ
ÿ

s1PS
pps1

|s, aqV ˚
psq

)

@s P S.

Even if we have the reward function (easier to estimate if we assume that it is deter-
ministic), the absence of p does not allow to get π˚. Instead, the action-value function
is sufficient for retrieving the optimal policy even without the transition model and the
reward function:

π˚
psq P argmax

aPA
Qps, aq @s P S.

Therefore, once that we estimate the action-value function, we can retrieve its policy.
Thus, we can use MCFV (or MCEV) to estimate directly the Qπ, namely to perform
policy evaluation of π. In order to guarantee a persistent exploration, we need to use
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what [51] call a soft policy.

Definition 20 (Soft Policy). A policy π is said to be Soft if πpa|sq ą 0 @ps, aq P S ˆ A
and it gradually shifts closer and closer to a deterministic policy.

Definition 21 (ϵ-Soft Policy). An ϵ-soft policy is a soft policy for which πpa|sq ě

ϵ
|A|

@ps, aq P S ˆ A for some ϵ ą 0.

Definition 22 (ϵ-Greedy Policy). An ϵ-greedy policy π is an ϵ-soft policy defined as:

πpa|sq :“

$

&

%

1 ´ ϵ ` ϵ
|A|

if a “ argmax
aPA

Qps, aq

ϵ
|A|

otherwise

Basically, ϵ-greedy policies are the closest to a deterministic policy among the ϵ-soft
policies. It can be proved an analogous of Theorem 2 for ϵ-greedy policies:

Theorem 4 (ϵ-Greedy Policy Improvement Theorem). For any ϵ–greedy policy π, the
ϵ–greedy policy π1 with respect to Qπ is an improvement.

It should now be clear that, thanks to MCFV (MCEV) applied to the Q function, we are
able to estimate the action-value function of a certain policy π. Next, thanks to Theorem
4, we can perform policy improvement over a given policy π. We are therefore able to
perform Policy Iteration similarly to what we did in Dynamic Programming.
Up to now, we have talked about how to solve the prediction and the control problem
through On-Policy Monte-Carlo algorithms. Now we present the notion of Off-Policy
learning with MC. By definition of Off-Policy, we aim to learn a target policy π while
exploring the environment through a different behavior policy π̄. Notice that these meth-
ods usually suffer from a big variance and are slow to converge [51]. However, they
are more general than On-Policy methods, and allow to re-use the experience previously
collected. The main notion behind Off-Policy MC is Importance Sampling:

Definition 23 (Importance Sampling). We call Importance Sampling the notion of es-
timating the expectation of a distribution different from the function model used for col-
lecting the samples. In other words, given two probability distributions P,Q P ∆, we can
compute the expected value of a certain function f under P by using the samples collected
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from Q:
E

x„P p¨q

rfpxqs : “
ÿ

x

P pxqfpxq

“
ÿ

x

Qpxq

Qpxq
P pxqfpxq

“ E
x„Qp¨q

”P pxq

Qpxq
fpxq

ı

.

We can think at the ratio P pxq

Qpxq
as the importance weight that allows us to keep into

consideration that the sampling distribution is different. Given that a (action-) value
function is defined as the expected value of the return under the probability distribution
Pp,π induced by the transition model p and the exploration policy π, we can simply correct
our MC algorithms for prediction and control by multiplying the returns to be averaged
by the importance ratio:

Qπ
ps, aq :“ E

τ„Pp,π

rvt|st “ s, at “ as “ E
τ„Pp,π̄

”

ź

t

πpst, atq

π̄pst, atq
vt|st “ s, at “ a

ı

,

where τ denotes the trajectory.

Temporal Difference Reinforcement Learning Temporal Difference (TD) methods
can address both the prediction and the control problem. Similarly to MC, TD is model-
free; however, it performs bootstrapping and it can learn online, i.e. it can learn without
waiting until the end of an episode. Simply, TD estimates the return of an episode with
the actual reward obtained plus the current estimate of the value function in the next
state. The update rule is thus:

V pstq Ð V pstq ` αprt`1 ` γV pst`1q ´ V pstqq,

This is basically the same update rule of MC, i.e. the formula of the running average:

V pstq Ð V pstq ` αpvt ´ V pstqq,

where for MC α “ 1
n
, the number of returns collected. Instead, for TD, α has the

meaning of learning rate. It is clear that we are replacing the return of the episode vt

with an estimate rt`1 ` γV pst`1q, and this explains why TD performs bootstrapping.
The quantity rt`1 ` γV pst`1q is called TD target, while rt`1 ` γV pst`1q ´ V pstq is the
TD error. We report in Algorithm 3 the pseudocode of the algorithm for solving the
prediction problem as presented in [51].
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Input: A policy π to be evaluated, the learning rate α P p0, 1s

Output: An estimate of V π

Initialize: V P R|S| arbitrarily, except that V pterminalq “ 0
while not all episodes generated do

Initialize S
for each step of the episode do
A Ð action sampled from π in S
Take action A, observe R and S1

V pSq Ð V pSq ` αrR ` γV pS1q ´ V pSqs

S Ð S1

end for
end while

Algorithm 3: TD(0).

Input: The learning rate α P p0, 1s, a small ϵ ą 0
Output: An estimate of Q˚

Initialize: Q P R|SˆA| arbitrarily, except that Qpterminal, ¨q “ 0
while not all episodes generated do

Initialize S
choose A from S using the policy derived from Q (e.g. ϵ-greedy)
for each step of the episode do

Take action A, observe R and S1

Choose A1 from S1 using the policy derived from Q (e.g. ϵ-greedy)
QpS,Aq Ð QpS,Aq ` αrR ` γQpS1, A1q ´ QpS,Aqs

S Ð S1

A Ð A1

end for
end while

Algorithm 4: SARSA.

With regards to control problems, since we are considering model-free algorithms, we
still need to estimate the action-value function instead of the value function in policy
evaluation, and then apply policy improvement through ϵ-policy improvement, in order
to guarantee continual exploration. The most famous algorithm for model-free TD RL
control is SARSA: its name derives from the quintuple xs, a, r, s1, a1y of observations needed
for performing an update step of the algorithm. It is presented in Algorithm 4 the version
presented in [51].

SARSA is guaranteed to converge to the optimal value function under certain conditions.

Theorem 5 (Convergence of SARSA). SARSA converges to the optimal action-value
function if:



2| Background 23

• we choose a GLIE4 sequence of policies πt;

• we use a Monroe-Robinson sequence of step-sizes αt, namely
`8
ř

t“1

αt “ `8 and
`8
ř

t“1

α2
t ă `8

We can apply importance sampling to the TD update in order to make SARSA an offline
algorithm; the policies ratio consists now in a single ratio, thus there is much lower
variance than in MC:

Qpst, atq Ð Qpst, atq ` α
´

rt`1 ` γ
πpat`1|st`1q

π̄pat`1|st`1q
Qpst`1, at`1q ´ Qpst, atq

¯

.

However, Q-learning [58] is the most used off-policy TD algorithm for control. In this
case, we directly learn the optimal policy while using any ϵ-greedy policy as behavioral
policy. The update rule in this case is5:

Qpst, atq Ð Qpst, atq ` α
´

rt`1 ` γ max
at`1PA

Qpst`1, at`1q ´ Qpst, atq
¯

.

Comparison between MC and TD It is important to compare MC with TD by
considering the bias-variance trade-off. It is clear that MCFV, since it uses all the data
collected during the whole episode, is unbiased, while TD is biased. However, MC has a
lot of variance since it depends on many random events (all the actions of the episode),
while TD has much lower variance since it depends on only one random event. Moreover,
we can see that TD exploits the Markovianity property, while MC does not, thus MC
performs better in environments where such property does not hold. Finally, we recall
that TD performs bootstrapping, and that it is an online algorithm, while MC is not. We
can manage the bias-variance trade-off between MC and TD by considering an algorithm
which is somewhat in the middle between them, which is called TD(λ). It defines the
n-step return as vpnq

t :“ rt`1`γrt`2`. . .`γn´1rt`n`γnV pst`nq and then uses a parameter
λ to average all such returns and then use them to perform the update. The λ-return is

defined as: vλt :“ p1´λq
8
ř

n“1

λn´1v
pnq

t . The forward-view TD(λ) thus uses the update rule:

V pstq Ð V pstq ` αpvλt ´ V pstqq,

while a more efficient backward-view TD(λ) can be implemented through the mechanism
of the eligibility traces. When λ “ 0, then the update coincides with the usual TD update,

4By GLIE we define a Greedy in the Limit of Infinite Exploration, that is that all the state-action
pairs are visited an infinite number of times and the sequence of policies converges to a greedy policy.

5It should be remarked that, in case of Q-learning, we do not need GLIE conditions.
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while for λ “ 1 the sum of errors becomes the MC error, thus TD(1) is more or less
equivalent to MCEV. The bias-variance trade-off is managed thanks to the parameter λ.
A similar reasoning can be applied to the control problem, where we have the SARSA(λ)
algorithm.

Value-based Function Approximation

In the case the state space S and/or the action space A are very large and/or continuous,
or the time is continuous, then, we cannot use a tabular representation for the value
function, since it would be unfeasible or impossible. The idea is to approximate the value
function by introducing a vector of weights w with which parametrize it:

vw « vπ,

qw « qπ.

There are three types of function approximation we can adopt, namely vw : S Ñ R,
qw : S ˆ A Ñ R and qw : S Ñ R|A|. We want the function approximator to be able
to generalize well and we will update the value of w at each step of the algorithm. The
task is similar to that of supervised learning, but there is an important difference: the
experience collected through time is not independent. Moreover, the target can now be
non-stationary, since we improve the policy we learn, and with it also the value function
improves and thus changes with time. We want to minimize the following loss function:

Lpwq “
1

2
E

S„dπp¨q

”

pvπpSq ´ vwpSqq
2
ı

,

where dπ is the on-policy distribution over states induced by policy π. In other words,
we minimize the mean square error (MSE) between the true value function vπ and its
approximation vw.

Incremental Methods In the case of incremental methods, the loss can be minimized
through Gradient Descent or Stochastic Gradient Descent; the gradient of the loss is:

∇wLpwq “ ´ E
S„dπ

”

pvπpSq ´ vwpSqq∇wvwpSq

ı

,

and the update rule of the GD simply w Ð w ´ α∇wLpwq. The Stochastic Gradient
Descent (SGD) uses one of the input samples at each iteration to perform the update.
We can consider on-policy/off-policy and for prediction/control incremental methods. The
idea of the methods for the prediction problem is to approximate the vπ using the rewards,
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while methods for the control problem approximate qπ with the rewards and then perform
policy improvement. Clearly, vπ and qπ are not provided, thus we need to estimate them
with the rewards. We can consider the following incremental methods:

On-policy for prediction We substitute a target for vπ, and the target depends on the
method adopted; for MC we use as target the return Gt and the update rule becomes
∆w “ αpGt ´ vwpStqq∇wvwpStq. For TD, we use the TD target Rt`1 ` γvwpSt`1q

and as update rule ∆w “ αpRt`1 ` γvwpSt`1q ´ vwpStqq∇wvwpStq while for TD(λ)
we use the λ-return Gλ

t , so we have ∆w “ αpGλ
t ´ vwpStqq∇wvwpStq. It should be

remarked that the MC incremental on-policy algorithm for prediction is a gradient
method, because pGt ´ vwpStqq∇wvwpStq corresponds to the gradient of a certain
objective function, while TD and TD(λ) are called semi-gradient methods since
the update rule does not correspond to the gradient of any objective function.

Off-policy for prediction In this case, we explore through the behavioral policy b

and we want to learn the policy π, thus we can use importance sampling for

MC, TD and TD(λ). The update rule of MC become ∆w “ α
´T´1
ś

l“t

ρl

¯

pGt ´

vwpStqq∇wvwpStq, where ρt :“
πpAt|Stq

bpAt|Stq
is the importance weight. For TD we have

∆w “ αρtpRt`1 ` γvwpSt`1q ´ vwpStqq∇wvwpStq and for TD(λ) we have ∆w “

α
´T´1
ś

l“t

ρl

¯

pGλ
t ´ vwpStqq∇wvwpStq.

On-policy for control As aforementioned, in the case of control we estimate qπ and
then we perform policy improvement. The update rules are the same as those for
on-policy prediction methods except for that we have to replace vw with qw. The
pseudo-code for the semi-gradient SARSA(0) algorithm is presented in Algorithm
5.

Off-policy for control In this case we can directly learn q˚ while executing an explo-
ration policy. We can consider for instance the Q-learning target for q˚, namely
Rt`1`γmax

a1PA
qwpSt`1, a

1q, to obtain the update rule ∆w “ αpRt`1`γmax
a1PA

qwpSt`1, a
1q´

qwpSt, Atqq∇wqwpSt, Atq. The semi-gradient Q-learning algorithm for control is
shown in Algorithm 6.

It is worthy to introduce what is called the Deadly Triad, i.e. bootstrapping, non-linear
function approximation and off-policy property. In presence of all these three properties,
no incremental method is proved to converge.
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Input: The learning rate α P p0, 1s

Output: An estimate qw of q˚

Initialize: w arbitrarily
while not all episodes generated do

Initialize S
choose A from S using the exploration policy
for each step of the episode do

Take action A, observe R and S1

Choose A1 from S1 using the exploration policy
w Ð w ` αpR ` γqwpS1, A1q ´ qwpS,Aqq∇wqwpS,Aq

S Ð S1

A Ð A1

end for
end while

Algorithm 5: Semi-gradient SARSA(0).

Input: The learning rate α P p0, 1s

Output: An estimate qw of q˚

Initialize: w arbitrarily
while not all episodes generated do

Initialize S
choose A from S using the exploration policy
for each step of the episode do

Take action A, observe R and S1

w Ð w ` αpR ` γmax
a1PA

qwpS, a1q ´ qwpS,Aqq∇wqwpS,Aq

Choose A1 from S1 using the exploration policy
S Ð S1

A Ð A1

end for
end while

Algorithm 6: Semi-gradient Q-learning.
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Policy Gradient

Previously, we defined the difference between value-based, policy-based and actor-critic
methods. In the previous section, we saw value-based methods, since we were approxi-
mating the value functions. Now we consider policy-based methods, in which there is a
parameter vector θ P Rd that we use for parametrizing the policy πθ. In order to measure
the quality of a policy πθ, we use a scalar objective like the expected return:

Jpθq :“ E
S0„µ0p¨q

”

vπθ
pS0q

ı

“ E

«

`8
ÿ

t“0

γtRt|S0 „ µ0, πθ

ff

.

The expected return can be considered in two equivalent ways: the trajectory view
and the occupancy view. The trajectory view uses the probability of a trajectory
τ “ pS0, A0, S1, A1, . . . , ST´1, AT´1, ST q under policy πθ:

pθ “ µ0pS0q

T´1
ź

t“0

πθpAt|StqppSt`1|St, Atq,

and the trajectory return

Gpτq “

T´1
ÿ

t“0

γtrpSt, Atq,

to rewrite the expected return as the expectation of the trajectory return under its prob-
ability

Jpθq “ E
τ„pθ

“

Gpτq
‰

.

Instead, the occupancy view exploits the definition of γ-discounted occupancy:

dπθ
psq :“

8
ÿ

t“0

γtPpSt “ s|S0 „ µ0, πθq,

to rewrite the expected return as

Jpθq “
1

1 ´ γ
E

S„dπθ p¨q

A„πθp¨|Sq

“

rpS,Aq
‰

,

where the term 1
1´γ

is needed to make the occupancy a probability measure. We have a
theorem that states the equivalence between the two.

Theorem 6 (Equivalence between trajectory and occupancy view). The two representa-
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Input: The learning rate α P p0, 1s, a shape for πθ
Output: An estimate πθ
Initialize: θ arbitrarily
for all the iterations k “ 1, . . . ,K do

sample m trajectories τ i “ pSi
0, A

i
0, S

i
1, A

i
1, . . . , S

i
T´1, A

i
T´1, S

i
T q following πθ

compute the RF gradient estimate ∇̂RF
θ Jpθq “ 1

m

m
ř

i“1
ĝi; /* Sample mean */

θ Ð θ ` α∇̂RF
θ Jpθq

end for

Algorithm 7: REINFORCE (RF)

tions are equivalent:

E
τ„pθ

“

Gpτq
‰

“
1

1 ´ γ
E

S„dπθ p¨q

A„πθp¨|Sq

“

rpS,Aq
‰

.

The problem of finding the best θ is an optimization problem; we aim to maximize Jpθq.
We can thus solve it with the gradient ascent algorithm θk`1 Ð θk `α∇θJpθq

ˇ

ˇ

ˇ

θ“θk
where

∇θJpθq is the policy gradient. We will now present some famous white-box approaches,
i.e. approaches that compute the gradient analytically. The first one is REINFORCE
[59], and it works by proposing a certain shape of the policy function πθ like a softmax

policy πθpa|sq “ exps,aq⊺θ
ş

a1 exps,a1q⊺θda1
or a gaussian policy πθpa|sq “ 1?

2πσ2
exp

˜

´1
2

´

a´µθpsq

σ

¯2

¸

and then noticing that the policy gradient coincides with:

∇θJpθq “ E
τ„pθ

«

´

T´1
ÿ

l“0

∇θ log πθpAl|Slq

¯´

T´1
ÿ

t“0

γtrpSt, Atq

¯

ff

.

REINFORCE simply replaces the expectation with regards to pθ with its sample mean.
The algorithm is presented in Algorithm 7 where we have used:

ĝi :“
´

T´1
ÿ

l“0

∇θ log πθpAi
l|S

i
l q

¯´

T´1
ÿ

t“0

γtrpSi
t , A

i
tq

¯

.

REINFORCE suffers from a large variance. In [6], Baxter & Bartlett introduce G(PO)MDP,
a policy gradient algorithm that suffers from less variance than REINFORCE. It is able
to reduce the variance by applying the causality property: Baxter & Bartlett noticed that
the rewards collected in the past do not depend on the actions played in the future, thus
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they rewrite the policy gradient as:

∇θJpθq “ E
τ„pθ

«

T´1
ÿ

t“0

´

γtrpSt, Atq

t
ÿ

l“0

∇θ log πθpAl|Slq

¯

ff

.

The pseudo code of G(PO)MDP is the same of REINFORCE 7, the only difference is
line 5 in which ∇̂RF

θ Jpθq is replaced by ∇̂GpPOqMDP
θ Jpθq; simply, we can use the following

definition for ĝi instead of the previous one:

ĝi :“
T´1
ÿ

t“0

γtrpSi
t , A

i
tq

t
ÿ

l“0

∇θ log πθpAi
l|S

i
l q.

A nice trick for further reducing the variance is to use a baseline bpτq P Rd:

Jpθq “ E
τ„pθ

“

∇θ log πθpτq d pGpτq ´ bpτqq
‰

where d represents the element-wise product. Up to now, we have considered only finite-
length trajectories. There is a theorem proved in [52] that allows to compute analytically
the policy gradient in the case of infinite trajectories.

Theorem 7 (Policy Gradient Theorem). For an infinite-horizon MDP, let πθ be a stochas-
tic policy differentiable in θ, then the policy gradient is given by

∇θJpθq “ E
S„dπθ p¨q

A„πθp¨|Sq

“

∇θ log πθpA|Sqqπθ
pS,Aq

‰

Since G(PO)MDP still has a large variance, and since Th. 7 provides a form for ∇θJpθq

which includes the value function, then we can introduce a critic component to estimate
qw « qπθ

and thus use an actor-critic algorithm. If we use a linear function approximation
qw “ xps, aq⊺θ, where xps, aq are the features, then the pseudo-code of an actor-critic
algorithm is provided in Alg. 8.

2.3. Inverse Reinforcement Learning

In this section, we introduce the fundamental notion of Inverse Reinforcement Learning
(IRL). To do so, we will start by defining Imitation Learning, which is the main discipline
that comprises all the techniques of IRL, and Behavioral Cloning, which is the main
alternative to IRL when tryng to solve an Imitation Learning problem.
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Input: The learning rates α, β P p0, 1s, respectively for the actor and the critic
Output: An estimate πθ and qw
Initialize: θ P Rn,w P Rd arbitrarily
for each episode do

initialize S
sample A „ πθp¨|Sq

take action A, observe R and S1

for each step of the episode do
sample A1 „ πθp¨|S1q

δ Ð R ` γqwpS1, A1q ´ qwpS,Aq

w Ð w ` βδ∇wqwpS,Aq; /* Update the critic */
θ Ð θ ` α∇θ log πθpA|SqqwpS,Aq; /* Update the Actor */
S Ð S1

A Ð A1

take action A, observe R and S1

end for
end for

Algorithm 8: Action-Value Actor-Critic

2.3.1. Imitation Learning

According to [43], the purpose of imitation learning is to efficiently learn a desired behavior
by imitating an expert’s behavior. In other words, this is the setting where we want to
teach to our artificial intelligent agent to solve a certain task, and we have an expert
available. An expert, usually a human expert, is defined as any entity that knows how to
optimally solve a certain task. We aim to teach to our agent what to do based on what
the expert does. As an example, let us consider a robotic arm agent, and the goal is to
teach it how to play table tennis. If we know a professional table tennis player, we can
use him to teach to the arm how to play. Notice that this setting is rather different from
that of Reinforcement Learning, where we teach the agent what to do simply by defining
its objective using a reward function.

Understanding the Problem

According to the survey [43], we have to ask different questions when deciding to solve
a problem using Imitation Learning (IL) techniques. The general aspects we have to
consider are:

1. Why and when should imitation learning be used?

2. Who should demonstrate?

3. How should we record data of the expert demonstrations?
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4. What should we imitate?

After answering these questions, we will have a clear understanding of the problem, and
if we are still convinced to use an Imitation Learning technique, then we can begin to
reason about the algorithmic aspects:

1. How should we represent the policy?

2. How should we learn the policy?

Difference between Imitation Learning and Supervised Learning

It should be remarked that Imitation Learning is rather different from Supervised Learn-
ing. Indeed, in IL there might be some structural constraints in the solution and gathering
new samples is usually expensive. Thus, we have to minimize as much as we can this task.

Problem Definition

Formally, in an IL problem there is an expert demonstrator that provides trajectories
that we use to teach our agent what to do. If we denote the features of both agent and
environment at a certain time instant by ϕt, then we can write the expert demonstration
(trajectory) as τ “ rϕ0,ϕ1, . . . ,ϕT s. Notice that the trajectory is T time steps long (ϕ0

is the initial conditions). The demonstrations often take place in different conditions,
so each trajectory has to be considered in a certain context. We introduce a vector s

to denote the context in which the demonstration has taken place. Therefore, in an IL
setting we have a dataset of demonstrations D “ tpτ1, s1q, pτ2, s2q, . . . , pτN , sNqu, where
N is the number of demonstrations provided by the expert. If we denote by qpϕq the
distribution over features induced by the expert’s policy and ppϕq the distribution over
features induced by the learner’s policy, then the goal can be defined as that of minimizing
the distance between qpϕq and ppϕq according to a certain metric D between probability
distributions. In symbols, we aim to find policy π˚ such that:

π˚
P argminD

`

qpϕq||ppϕq
˘

Design Choices

The following discussion follows Chapter 2 of [43]. When we aim to solve a problem using
an IL method, there are many design choices we must take:

• Access to the reward function: imitation learning or reinforcement learning;
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• Parsimonious description of the desired behavior: behavioral cloning or inverse re-
inforcement learning;

• Access to system dynamics: model-based or model-free;

• Similarity measure between policies;

• Policy representation;

• Features.

In the following paragraphs, we will discuss each of the presented decision points.

Access to the reward function: imitation learning or reinforcement learning
We have to distinguish the case in which the learner has access to the expert demon-
strations only from the case in which the learner can access both expert demonstrations
and a reward signal that would allow him to perform forward RL directly. If we have
a reward signal, then we might solve the learning problem simply through RL, without
caring about the expert. But if we have also the expert, we can exploit it to limit the
exploration needed to apply RL. Therefore, the main trend when having both of them is
to initialize a policy using expert demonstrations and then refine it through reinforcement
learning.

Parsimonious description of the desired behavior: behavioral cloning or in-
verse reinforcement learning The main question here is to identify the most par-
simonious description of the policy. The two main and contrasting methods for doing
so are Behavioral Cloning and Inverse Reinforcement Learning, which will be presented
respectively in Section 2.3.2 and Section 2.3.3. Let us mention here just an high-level
difference among the two. Behavioral Cloning aims to directly learn a policy that maps
inputs (and contexts) to actions/control inputs, and it can be usually computed through
supervised learning methods. Instead, Inverse Reinforcement Learning concerns the re-
covering of a reward function from expert demonstrations that completely encodes the
policy we aim to learn. In other words, here we do not learn directly the policy, but we
learn a reward function that implicitly represents it. Implicitly here means that we can
recover it through forward RL over the learned reward function.

Access to system dynamics: model-based or model-free The difference between
model-based and model-free methods concerns the modelling or not of the system dy-
namics. Model-based methods learn a forward model of the environment and then use it
to learn the policy. Instead, Model-free methods directly learn the policy without mod-
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elling the dynamics. The distinction is the same presented when talking about RL. In
model-free methods, the system dynamics is encoded implicitly inside the learned policy.
Behavioral cloning methods have focused on model-free for years. Instead, in model-based
methods the system dynamics is explicitly modelled, and such model can be used by IRL
methods. Model-free approaches have the advantage of being more efficient since they do
not estimate the model, but they can be less precise. Instead, model-based approaches
make the learning process data-efficient, but they are more computationally expensive.

Similarity measure between policies To understand what to learn, we need to con-
sider a similarity measure between policies. However, since the expert’s policy is not
directly observable, we need to learn it from the demonstrations. Therefore, the problem
of observability, which concerns what the learner/expert can observe about the envi-
ronment, arises. We can have settings in which the trajectories of the expert are fully
observable, thus, the learner observes both the states and the actions, but also settings in
which only the states (or only the actions) can be observed by the learner. It is clear that
partial observability can cause many problems during the learning process. Moreover,
partial observability can be different also between expert and learner. The expert might
partially observe the system state, the control inputs of the expert or the observations
of the learner, while the learner might partially observe the system state, the expert’s
observations, the control inputs by the expert and the control inputs by the learner. An
example in [43] of the problems that might arise is that in which a human expert performs
a motion which goes around an obstacle that the learner does not observe. Clearly, the
agent learns that doing this kind of circular motions is optimal, even in the absence of
obstacles.

Policy representation It is fundamental to choose the most appropriate policy repre-
sentation for the given task. To do so, we have to choose the best features that allow to
solve the problem and, at the same time, to limit the complexity of the problem. There
are three main kinds of policy representation in this context: symbolic-level abstraction,
trajectory-level abstraction and action-state space abstraction. With regards to symbolic-
level abstraction, the agent learns a policy that generates an option o P O over time. Since
in this context it is hard to model a complex task through a single movement/action, we
make the policy a sequence of simple movements:

π : xt, s Ñ ro1, . . . , oT s.
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Instead, in trajectory-level abstraction, the agent learns a policy that maps a context s

to a trajectory:
π : s Ñ τ .

Finally, in action-state space abstraction the agent learns a policy that directly maps
states and contexts to actions:

π : xt, s Ñ at.

This is a fine-grained representation and is that used in RL. Another distinction is between
Monolithic policies, when we consider a single abstraction level of policy, and Hierarchical
policies, when we combine different levels of abstractions, and we learn lower-level policies
for the primitive behavior and upper-level policies to plan a sequence of lower-level policies.
Another distinction is between Feedback policies, that iteratively determine the desired
action based on the feedback received by the environment, and Open-Loop policies, which
learn the behavior based only on the initial input. Finally, we can distinguish policies
based on their stationarity and stochasticity, analogously to what we did in RL.

Features We need to choose the best policy representation that allows to properly
capture the desired behavior. In other words, we have to understand what should be
matched between the expert and the learner. There are three main Behavior Descriptors
that can be matched between the expert and the learner in IL. The first one is the
state-action distribution pps, aq. Given a dataset D “ tpsi,aiqu, we might learn the
policy by supervised learning in this way. However, since state-action distribution only
defines the short-term behavior, it might lead to a mismatch with long-term behavior.
Another behavior descriptor is the Trajectory Feature Expectation: we aim to match
features between trajectories, so that to keep into account long-term behavior. Because
of stochasticity, we consider the expected value:

E
τ„pp¨q

rϕpτ qs “

ż

ppτ qϕpτ qdτ

A third behavior descriptor is the Trajectory Feature Distribution: we might aim to
match ppτ q not only at the first moment (expectation) but also at higher moments.

2.3.2. Behavioral Cloning

Behavioral Cloning (BC) methods learn a direct mapping from states/contexts to trajecto-
ries/actions without recovering the reward function [43]. The presentation of the following
contents is based on [43].
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Problem Statement

BC aims to learn an optimal policy based on the strategy of the expert. As afore-
mentioned, when talking about IL, a dataset of expert demonstrations can be made
of trajectories and contexts D “ tpτ1, s1q, . . . , pτN , sNqu or of states and actions D “

tps1,a1q, . . . , psN ,aNqu. By using such datasets, BC aims to learn a mapping from con-
texts to trajectories or from states to actions. The problem can easily be recast into a
Supervised Learning problem in which we can learn the policy by solving a regression
problem. In other words, we simply have to choose a shape/parametrization for the pol-
icy πθ and a loss function, and then optimize πθ w.r.t. θ according to the defined loss
function.

Design Choices

In addition to the design choices presented in section 2.3.1, when developing BC systems
we have to reason also to [43]:

1. What surrogate loss function should be used to represent the difference in demon-
strated and produced behavior?

2. What regression method should be used to represent the policy?

In other words, we need to understand which metric to use to evaluate the difference
between the learned behavior and that shown in the dataset of demonstrations, and also
the regression model to use that is complex enough to represent the desired behavior and
simple enough for allowing cheap computations.

Model-Free Methods

We consider model-free methods in three different settings: action-state space, learning
trajectories and task-level planning.

Model-Free Methods in Action-State Space Here, we consider the setting in which
we model the control problem using states and actions. It is intuitive how to use super-
vised learning. We can implement a regressor for mapping states to actions, and such
a function is our policy. However, there is the risk that this approach can fail since
samples, differently from usual supervised learning tasks, are not independent, because
taking an action instead of another one influences the subsequent sample. Therefore, if
the regression method is not provided with a big and various enough amount of samples,
then it will not learn how to properly generalize. Moreover, there is the problem of how
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to recover from bad actions too. In literature, we can find recent successes using deep
neural networks and recurrent neural networks in imitation learning.
It is important to notice that any learned policy will commit some mistakes. Because
of the dependence between samples in the IL setting, even small errors might end up in
huge errors. In other words, we might need to learn a policy for recovering from errors.
Many approaches are present in literature for addressing this task. One way is to use the
so-called structured prediction for learning a function that maps inputs x to struc-
tured outputs y. Another approach is the confidence-based approach, which aims
to ask the expert new demonstrations based on the confidence of a given state. A third
approach is DAGGER (data aggregation approach) [49], which attempts to collect new
expert demonstrations based on the state distribution induced by the learned policy.

Model-Free Methods for Learning Trajectories Now we move to trajectories,
whose planning problem is really important because it provides the high-level logic for
controlling lower-lever controllers that work in the state-action space. If we consider
datasets made of trajectories and contexts D “ tpτ1, s1q, . . . , pτN , sNqu, then we can use
supervised learning to map contexts to trajectories. However, it should be remarked that
we often need to ensure that the planned trajectory is feasible, thus we need to impose
some constraints for doing so.
There are various trajectory representations in literature.

Keyframe/Via-Point Based Approaches We can decide to represent trajectories us-
ing keyframes, which are called via-points in the context of robotics;

Hidden Markov Models We can use probabilistic models to represent motion, and
then we can use some algorithms for estimating the state transition matrix and
the output probability matrix. Then, we can estimate a certain sequence given the
initial state;

Dynamic Movement Primitives DMPs are representations motivated by differential
equations of well-defined attractor dynamics [43] and ensure the smoothness and the
continuity of the trajectory;

Probabilistic Movement Primitives Since expert behavior is often stochastic, DMPs
are not able to represent it, thus ProMPs have been introduced: they represent
movement as a distribution over trajectories;

Time-Invariant Dynamical Systems In literature we can find frameworks for repre-
senting task trajectories as time-invariant non-linear dynamical systems [28].

Every representation has its strengths and weaknesses.
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Model-Free Methods for Task-Level Planning We have seen action-state space
and trajectories. Now we see task-level planning, which is useful when a task requires
complex motion, since it allows to plan the motion as a sequence of primitive motions.
Given that the demonstrated trajectories present in the dataset might consist of sequences
of different types of primitive motions, then it might be necessary to segment the demon-
strated trajectories in order to retrieve the primitives. After segmentation, clustering is
fundamental for learning multiple types of primitive motions. Therefore, after segmenta-
tion and clustering, we can model the structure of the skill and learn the transition between
primitive motions from the demonstrated behavior.

Model-Based Methods

In IL, a problem that often arises is the correspondence problem, which concerns the
different “embodiment”, the different dynamics between the expert and the learner, which
might cause the learner to learn something from the demonstrated trajectories. One way
for solving this problem is that of explicitly learning the forward dynamics model of
the system st`1 “ fpst,atq and then use it for learning. Various regression approaches
can be applied to this problem like Gaussian Mixture and Gaussian Processes. However,
it is also possible to avoid to learn the forward dynamics model of the system by using
iterative learning control [56].

2.3.3. Inverse Reinforcement Learning

In Inverse Reinforcement Learning (IRL), we assume that the expert agent has an objec-
tive that can be modelled as the cumulative maximization of a reward signal over time. In
other words, the expert agent is playing the optimal policy in a certain Markov Decision
Process. If we are able to retrieve the reward function (the goal) of the expert agent, then
we are able to subsequently train our learner with forward RL using the learned reward
signal. It should be noticed that the definition of the reward function in the RL setting
is provided by the engineer that trains the learner, and such manual choice is usually
difficult to do. In this section, we will mostly reuse the notation introduced in Section
2.2.

Problem Definition

An inverse reinforcement learning problem [IRL, 42] is defined as a pair pM, πEq, where
M is an MDP\R and πE is an expert’s policy. Informally, solving an IRL problem consists
in finding a reward function prhqhPJHK making πE optimal for the MDP\R M paired with
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reward function r. Any reward function fulfilling this condition is called feasible and the
set of all such reward functions is called feasible reward set [36, 39], defined as:

RpM,πEq :“
!

prhqhPJHK

∣∣∣ @h P JHK : rh : S ˆ A Ñ r´1, 1s

^ @ps, a, hq P S ˆ A ˆ JHK : AπE

h ps, a; rq ď 0
)

.
(2.2)

We will omit the subscript pM, πEq whenever clear from the context.

Definition 24 (Feasible Set). We define Feasible Set the set of all the reward functions
which are compatible with a certain expert policy. By compatibility it is meant that reward
R makes expert policy πE optimal in the setting.

Formally, we can define an IRL instance as:

Definition 25 (IRL). A finite-horizon IRL instance can be defined as a tuple
xS,A, p, µ0, H, πEy, where S is the state space, A is the action space, p is the transition
model, µ0 is the initial state distribution, H is the time horizon and πE is the expert
policy. The goal is to retrieve a function R : S ˆ A Ñ R such that policy πE is optimal
in the RL problem xS,A, p, µ0, H,Ry.

Notice that if we replace H with γ, we can move to the γ-discounted infinite horizon
setting. As shown in [42], the IRL problem is ill-posed, because there are multiple reward
functions that make the expert policy optimal. [2] shows that if the true reward func-
tion RE was available for purposes of evaluation, then the direct distance ||RE ´ R̂E|| is
useless, since an MDP’s optimal policy is invariant under affine transformations of the
reward function [50]. Comparing directly the policies might give problems too. Another
possibility might be to measure the Inverse Learning Error :

Definition 26 (Inverse Learning Error). Given the expert policy πE and the policy π̂E

induced by the learned reward function, then we define the Inverse Learning Error (ILE)
as the distance between the value functions according to a certain p-norm:

||V πE

´ V π̂E

||p.

Methods for IRL

This section takes inspiration from section 4 of [2]. In Algorithm 9, we can see the general
routine on which all the IRL algorithms are based.

The majority of IRL algorithms chooses a certain parametric shape for the reward function
to return, iteratively computes the optimal policy in the MDP with the reward and



2| Background 39

Input: IRL instance, dataset D of trajectories, πE

Output: An estimate R̂E

Model the expert’s observed behavior as the solution of an MDP whose reward function is
not known
Initialize the parameterized form of the reward function using any given features (linearly
weighted sum of feature values, distribution over rewards, or other)
Solve the MDP with current reward function to generate the learned behavior or policy
Update the optimization parameters to minimize the divergence between the observed behav-
ior (or policy) and the learned behavior (policy)
Repeat the previous two steps till the divergence is reduced to a desired level.

Algorithm 9: Template for IRL

updates the reward by minimizing the distance between the observed and the learned
policy. It is clear that any IRL algorithm is simply a method for choosing only one reward
function among all the possible functions from the feasible set. There are many ways for
doing so. According to [2], we can group IRL algorithms in 4: Margin Optimization,
Entropy Optimization, Bayesian Update, Classification and Regression.

Margin Optimization Margin Optimization refers to methods that aim to learn the
reward function with a certain margin. Intuitively, the better the margin the better it
is. We aim to find the reward function that is better than others with a certain margin.
Depending on the definition of margin, there are various families of methods.

Margin of optimal from other actions or policies The margin is here defined as
the sum of the differences between the optimal action-value function and the optimal
action-value function when the optimal action is removed over all the states:

ÿ

sPS

´

Qπ
ps, a˚

q ´ max
aPAzta˚u

Qπ
ps, aq

¯

,

where a˚ is the optimal action for state s. We are choosing the reward function that
induces a policy π for which the margin, namely the distance between the Q-function
when playing π and the Q-function when optimal actions of π are removed, is
maximum. We aim to find the reward for which changing the induced optimal policy
provides the biggest decrement in action-value function. If the reward function is
feature-based, i.e. it can be seen as, for instance, a linear combination of features
ϕ: rps, aq “ w⊺ϕps, aq, then we can rewrite the previous expression of the margin
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using the definition of states distribution d:

ÿ

ps,aqPτt

´

dpsqw⊺ϕps, aq ´ max
τPpSˆAqHztτtu

dpsqw⊺ϕps, aq

¯

Where we have done the same with trajectories instead of actions. pS ˆ AqH is the
set of all the possible trajectories of length H. One of the first methods of this kind
has been introduced in [42], the foundational work for this discipline.

Margin of observed from learned feature expectations Some methods aim to min-
imize the margin defined as the feature expectation loss :

ˇ

ˇµϕ
pπq ´ µ̂ϕ

pDq
ˇ

ˇ

where µϕpπq is the expected feature count of all the features under policy π, defined
as:

Definition 27 (Expected Feature Count). Given a policy π and the k-th feature
function ϕk : S Ñ R of the reward function, we define the Expected Feature Count
µϕk as the value of the feature that we expect to see over time under π and under
the visit occupancy dπ:

µϕkpπq :“
`8
ÿ

t“0

dπpstqϕkpst, πpstqq

µ̂ϕpDq is the empirical feature count of the expert policy in the trajectories present
in dataset D. In other words, the idea behind these methods is to find the reward
function that provides an optimal policy whose expected feature count is as close as
possible to the empirical one of the expert policy. Features summarize states, and
we aim to visit states with π (optimal under the learned reward function) so that
the expected features are close to the expert ones. Two foundational methods are
MAX-MARGIN and PROJECTION [1].

Observed and learned policy distributions over actions Another approach is to min-
imize the distance between the empirical expert policy and the learned policy in
every state:

π̂E
pa|sq ´ πpa|sq.

HYBRID-IRL is an algorithm of this kind [41].
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Entropy Optimization The methods in this subsection exploit the maximum entropy
principle. They aim to find the reward function that induces a distribution with maximum
entropy. Depending on the distribution, there are different families of methods:

Entropy of the distribution over trajectories or policies These methods aim to learn
a reward function that induces a distribution over all the trajectories with maximum
entropy:

max
PP∆pSˆAqH

´
ÿ

τPpSˆAqH

P pτ q lnP pτ q.

Therefore, the idea is that the reward, that induces a policy under which we visit all
the trajectories in the most uniform way, is the closest to the true reward function
of the expert. However, since the search in the space of the trajectories grows
exponentially, often we prefer to optimize:

max
P

´
ÿ

πP∆SˆA

P pπq lnP pπq,

the entropy of the distribution over policies induced by the learned reward function.
A famous method in this context is MAXENT IRL [61].

Relative entropy of the distribution over trajectories Another idea is to optimize
the KL divergence between the distribution P induced by the learned reward func-
tion and a certain baseline distribution Q. Notice that in case Q is the uniform
distribution it reduces to the maximization of the entropy of P :

max
PP∆pSˆAqH

´
ÿ

τPpSˆAqH

P pτ q ln
P pτ q

Qpτ q
.

This is the objective of REIRL [10].

Bayesian Update The idea is to apply Bayes theorem to a certain prior over reward
functions using the dataset D. If we denote the prior over reward functions with PpR̂q

and the likelihood with Ppτ |R̂q, then the update rule becomes:

PpR̂|τ q 9 Ppτ |R̂qPpR̂q,

where the likelihood is typically factored as Ppτ |R̂q “
ś

ps,aqPτ

Ppps, aq|R̂q. In this way, after

having performed the update as the number of demonstrations in D, we aim to end up
with a distribution over reward functions from which we aim to draw the best estimate
for R̂. This idea can be implemented in various ways:
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Boltzmann distribution We can select the likelihood function to be the Boltzmann
distribution with the action-value function as energy:

Ppτ |R̂q 9 exp
Q˚ps,a;R̂q

β ,

where β controls the randomness of the distribution. BIRL [46] works in this way.

Gaussian process We might parametrize the reward function as a non-linear function
of features and then model it as a Gaussian process. The algorithm GPIRL [35]
computes the posterior using such parameters for the likelihood.

Maximum likelihood estimation Instead of updating the posterior, another possibil-
ity is to directly maximize the likelihood function.

Classification and Regression There is also the possibility to apply supervised learn-
ing methods for classification and regression for solving the IRL problem:

Classification based on action-value scores We can consider the setting in which we
aim to learn the action to play in every state. This is a multi-label (in case of more
than two actions) classification problem. Simply, we can consider as score of a
classification the Q-function, that is if we predict action a in state s, then the score
of this prediction is Qπps, aq “ w⊺µϕpπqps, aq. The error can be computed w.r.t.
max
aPA

Qπps, aq. The goal is to learn the weights w, since these are the same weights
of the reward function. This is the setting as present in SCIRL [29].

Regression tree for state space partitions A linear function of the features might
require too many features to represent the entire state-action space. FIRL [34]
proposes to use a regression tree with individual features in the intermediate nodes
and a conjunction of indicator feature functions in the leaves.

2.4. PAC Learning

We will first present the PAC Learning Framework, then we will move to the main re-
sults of the Minimax Theory, and finally we will show why this theory is useful in the
Reinforcement Learning and related settings.

2.4.1. PAC Learning Framework

In [55], Valiant introduced the Probably Approximately Correct (PAC) framework. In his
paper, entitled “A theory of the learnable”, he states that he gives a precise methodology
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for studying this phenomenon of knowledge acquisition in the absence of explicit program-
ming from a computational viewpoint. It consists of choosing an appropriate information
gathering mechanism, the learning protocol, and exploring the class of concepts that can
be learned using it in a reasonable (polynomial) number of steps. As it is emphasized by
[21], the intent of the PAC model is that successful learning of an unknown target concept
should entail obtaining, with high probability, a hypothesis that is a good approximation of
it. In other words, PAC learning aims to retrieve, with a certain probability, an hypothesis
(the estimator) which is correct modulo a certain error. The presentation of concepts in
this section is based on [40].

The Problem Setting

It should be noticed that the PAC learning framework was initially introduced for the
Machine Learning field and then adapted to the Reinforcement Learning setting [26].
Here is the setting:

• L is the learner, our agent, the algorithm that aims to learn something;

• X is defined as the set of all the instances over which target functions can be
defined. For instance, X might be a set of people, or a set of objects, each of them
characterized by certain features;

• C is a set of concepts that the learner might aim to learn. A concept c P C refers
to a subset of items of X that satisfy a certain property. For example, c might
represent the subset of people who are skiers, or the objects which are yellow. A
concept c can be seen as a boolean function c : X Ñ t0, 1u which returns 1 if the
considered instance has the considered property and 0 otherwise;

• P is a stationary6 probability distribution over X that defines how the instances
are generated;

• H is the set of all the hypothesis among which the learner L can choose; simply,
any hypothesis h P H is a subset of X and can be seen as a boolean function
h : X Ñ t0, 1u similarly to the concepts. An example of hypothesis might be the
subset of people that like the mountains.

The goal of the learner L is to, after having observed some samples x „ Pp¨q along with
the label cpxq provided by a certain fixed concept c, output an hypothesis h that aims to
be an estimate of c. As an example, let us consider the set of people X visit Cortina.
Every person is characterized by two features, the age and the height. We sample people

6It means that P does not change with time.
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from X using a probability distribution P , which might simply provide as samples only
the people that visit the Bar PAC. Therefore, we take every person that visits the Bar
PAC in Cortina and label them as a skier or not (the concept c to be learned concerns
the subset of all the people that visit Cortina X that are skiers). Our learner L, which
might be a computer program or even a person, observes this dataset and aims to learn
concept c; in other words, the learner L aims to be able to predict, for a new person that
accesses Bar PAC, whether she is a skier or not. However, the learner can only observe
the age and the height of people, and it can only output an hypothesis h that belongs to
a certain space H. For example, H might be the set of hypothesis h1, h2, h3, h4, where h1

is the subset of people with less than 18 years and h2 with more than 18 years, and h3

the subset of people smaller than 1.75m and h4 the subset of people taller than 1.75m.
To sum up, the learner L observes N samples (people) that visit Bar PAC in Cortina
(x „ Pp¨q) and is told which of them are skiers (belong to concept c). Then, the goal of
L is to output an hypothesis h P H :“ th1, h2, h3, h4u which can correctly classify new
people that visit Bar PAC based on their features (age and height).
It should be remarked that the hypothesis h outputted by the learner L is not evaluated
over new samples collected at random (for example people in a certain square), but samples
collected according to the same distribution P (so new people that visit the same Bar
PAC).

Error of a Hypothesis

There are various types of errors that can be considered. Let us start with the true error
of an hypothesis h w.r.t. a target concept c and instance distribution P .

Definition 28 (True Error). The True Error errorPphq of an hypothesis h P H with
respect to a target concept c P C and a distribution P P ∆X is defined as the probability
that h will misclassify an instance drawn at random according to P:

errorPphq :“ Px„Pp¨q

“

hpxq ‰ cpxq
‰

.

It should be remarked that the true error depends on the probability distribution P from
which we collect samples. Notice also that the learner L cannot observe the true error of
h w.r.t. c, but only the error over the training examples, which are just a part of all the
samples that can be sampled from P . We define this error as the Training Error:

errorD :“
1

n

n
ÿ

i“1

␣

hpxiq ‰ cpxiq
(

,
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where D is the training set.

PAC learnability

It is clear that, unless the learner L is shown all the possible pairs xx, cpxqy, then it
is impossible to nullify the true error. Therefore, the PAC framework aims to analyze
algorithms that output hypothesis with an error bounded by ϵ with a certain probability
δ, i.e. that the error is bounded only for a certain percentage of randomly drawn sequences
of samples. As [40] remarks, we require only that the learner probably learn a hypothesis
that is approximately correct. This brings us to the definition of PAC-learnability.

Definition 29 (PAC-Learnable). Consider a concept class C defined over a set of in-
stances X of length N and a learner L using hypothesis space H. C is PAC-learnable by
L using H if for all c P C, distributions P over X, ϵ such that 0 ă ϵ ă 1{2, and δ such
that 0 ă δ ă 1{2, learner L will with probability at least p1´ δq output a hypothesis h P H

such that errorPphq ď ϵ, in time that is polynomial in 1{ϵ, 1{δ,N and sizepcq.

Therefore, we are asking two things to our learner L: pϵ, δq-correctness (error bounded by
ϵ w.h.p.) and that it does so efficiently. In practice, we care about the number of samples
required to achieve learning. In other words, we care about the Sample Complexity.

Sample Complexity for Finite Hypothesis Spaces

PAC-Learnability is mainly concerned with the number of training samples required by
the learner. Mitchell [40] defines the sample complexity as:

Definition 30 (Sample Complexity). The growth in the number of the required training
examples with problem size is called the Sample Complexity of the learning problem.

Let me introduce other useful definitions.

Definition 31 (Consistent Learner). A learner is consistent if it outputs hypotheses that
perfectly fit the training data, whenever possible.

Definition 32 (Version Space). The Version Space V SH,D is the set of all hypotheses
h P H that correctly classify the training examples D:

V SH,D :“ th P H : @xx, cpxqy P D : hpxq “ cpxqu.

It is clear that a learner is consistent if it outputs only hypotheses that lie in the version
space.
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Definition 33 (ϵ-exhausted). Consider a hypothesis space H, target concept c, instance
distribution P, and set of training examples D of c. The version space V SH,D, is said to
be ϵ-exhausted with respect to c and P, if every hypothesis h P V SH,D has error less than
ϵ with respect to c and P:

p@h P V SH,DqerrorPphq ă ϵ.

Basically, an hypothesis space is ϵ-exhausted if all the hypotheses that perfectly classify
the training examples have a true error upper bounded by ϵ. [20] provides a result that
allows to bound the probability that the version space will be ϵ-exhausted after a certain
number of samples:

Theorem 8 (ϵ-exhausting the version space). If the hypothesis space H is finite, and D
is a sequence of N ě 1 independent randomly drawn examples of some target concept c,
then for any 0 ď ϵ ď 1, the probability that the version space V SH,D is not ϵ-exhausted
(with respect to c) is less than or equal to |H|e´ϵN :

PpDh P H|h P V SH,D ^ errorPphq ě ϵq ď |H|e´ϵN .

To compute the number of samples required to make this failure probability smaller than
a certain δ, we can set |H|e´ϵN ď δ and solve with respect to N , obtaining:

N ě
1

ϵ

ˆ

ln |H| ` ln
1

δ

˙

.

Notice that this bound is really general, and as such is weak: the linear dependency on
|H| is too much.
In case the hypothesis space H does not contain the target concept c, then it is clear that
a zero-error hypothesis is impossible to achieve. What we might ask in this setting is to
retrieve the hypothesis h P H with minimum training error.

Definition 34 (Agnostic Learner). A learner that makes no assumption that the target
concept is representable by H and that simply finds the hypothesis with minimum training
error, is called an Agnostic Learner.

Mitchell highlights the fact that such kind of learner is called agnostic because it makes
no prior commitment about whether or not C Ď H. In this context, we usually bound
the probability that the true error is greater than the training error (bias) by a certain ϵ.
If we denote by errorPphq the true error of an hypothesis h, errorDphq the training error
of hypothesis h over dataset D and hbest P H the hypothesis of the hypothesis space with
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minimum training error, then our problem becomes that of bounding the probability that

errorPphbestq ď errorDphbestq ` ϵ.

To do so, we can exploit concentration inequalities [9] and in particular we might use the
Hoeffding bound [22] (in case the samples are i.i.d. coin flips) to obtain that:

PpDh P H|errorPphbestq ´ errorDphbestq ą ϵq ď |H|e´2Nϵ2 .

Again, if we want to bound the failure probability by δ, we can re-arrange the terms and
obtain a sample complexity of:

N ě
1

2ϵ2

ˆ

ln |H| ` ln
1

δ

˙

.

Sample Complexity for Infinite Hypothesis Spaces

Up to now we have considered finite hypothesis spaces. Now we move to infinite hy-
pothesis spaces and, potentially, continuous hypothesis spaces. It is clear that the bounds
developed in the previous section are infeasible, because they depend on |H|. We therefore
replace |H| with a new measure of the complexity of an hypothesis space, the Vapnik-
Chervonenkis dimension of H or V CpHq. The V C dimension does not measure the com-
plexity of an hypothesis space H with the number of distinct hypotheses in it, but instead
it measures the number of distinct instances from X that can be completely discriminated
using H [40]. To define it formally, we have to firstly introduce some notions.

Definition 35 (Dichotomy). A dichotomy of a set S is a partition of S into two disjoint
subsets.

Definition 36 (Shattering). A set of instances S is said to be shattered by hypothesis
space H if for every dichotomy of S there exist some hypothesis in H consistent with this
dichotomy.

In other words, the capacity of an hypothesis space to shatter set of instances is a measure
of its goodness to represent target concepts defined over these instances. It is clear that
an hypothesis space H is unbiased if it shatters the entire space X. We can now define
the V C dimension:

Definition 37 (V C Dimension). The Vapnik-Chervonenkis dimension, V CpHq, of hy-
pothesis space H defined over instance space X is the size of the largest finite subset
of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then
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V CpHq “ 8.

It is important to notice that every hypothesis space H with finite cardinality has a
bounded V C dimension: V CpHq ď log2p|H|q.
Using the V C dimension, [8] proved a minimum number of training samples N needed to
achieve pϵ, δq-correctness for any target concept in C:

N ě
1

ϵ

´

4 log2
2

δ
` 8V CpHq log2

13

ϵ

¯

.

2.4.2. Minimax Theory

Minimax Theory provides a rigorous framework for establishing the best possible perfor-
mance of a procedure under given assumptions [24]. We will now present its main notions
and concepts based on the lecture notes [24].

The Framework

When we solve a statistical learning problem, i.e., a classification or a regression problem,
we can use many different kinds of algorithms/estimators. The minimax theory provides
a set of techniques for determining the worst-case complexity of a problem and of a
procedure (algorithm). To do so, let us introduce some notation and concepts.
We denote by P a certain class of probability distributions, and by X1, X2, . . . , Xn a
sample from a distribution P P P . θpP q is some function of the true distribution P

generating the sample and θ̂pX1, X2, . . . , Xnq is an estimator of θpP q, thus a function of
the sample. Now that we have introduced the setting, we can define some important
notions in the context of minimax theory.

Definition 38 (Minimax Risk). Given a certain metric d, the minimax risk Rn is defined
as:

Rn ” RnpPq :“ inf
θ̂
sup
PPP

EP rdpθ̂, θpP qqs.

The minimax risk is the expected distance between the quantity to estimate and its
estimator when considering the algorithm/estimator which provides the minimum risk in
the worst case. In other words, it provides the minimum error that any algorithm that
tries to solve this problem, even the best one, faces in a certain instance of problem. What
is interesting is the value of n, the size of the sample:

Definition 39 (Sample Complexity). Given the minimax risk Rn, we define the sample
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complexity npϵ,Pq as:
npϵ,Pq :“ min

!

n : Rn ď ϵ
)

.

The sample complexity is the minimum number of samples we must gather in order to
be sure that the minimax risk is upper bounded by a certain ϵ. The more the samples,
the better, because they allow to reduce the error of the estimation problem. However,
since the minimax risk is difficult to be computed, what is usually done is to bound it
from below and from above until the two bounds match. Such lower and upper bounds
to the minimax risk are computed in different ways. The upper bound Un is “simpler” to
compute: indeed, we can fix a certain estimator/algorithm θ̂ and estimate its goodness:

RnpPq :“ inf
θ̂
sup
PPP

EP rdpθ̂, θpP qqs ď sup
PPP

EP rdpθ̂, θpP qqs ” Un.

To reduce such bound, we have to find an estimator which is optimal w.r.t. the worst
case. Instead, the computation of the lower bound Ln is much more tricky and it involves
the proposal of a certain problem P P P and then the computation of the expected error
than any possible algorithm/estimation suffers when trying to solve such problem:

RnpPq :“ inf
θ̂
sup
PPP

EP rdpθ̂, θpP qqs ě inf
θ̂
EP rdpθ̂, θpP qqs ” Ln.

Once that we get Ln and Un that asymptotically match, then we have succeeded in char-
acterizing the complexity of a statistical learning problem. There are two main methods
in minimax theory for computing the lower bound: Le Cam’s inequality and Fano’s in-
equality.

Le Cam’s Inequality

Before explaining the method, let us provide the important theorem of Le Cam as pre-
sented in the lecture notes of [24].

Theorem 9 (Le Cam’s Inequality). Let P be a set of distributions. For any pair P0, P1 P

P:

inf
θ̂
sup
PPP

EP rdpθ̂, θpP qqs ě
∆

4

ż

mintpn0 pxq, pn1 pxqudx ě
∆

8
e´nKLpP0||P1q, (2.3)

where ∆ :“ dpθpP0q, θpP1qq and p0, p1 are, respectively, the densities of P0, P1.

Corollary 1. Suppose there exist P0, P1 P P such that KLpP0||P1q ď log 2{n. Then:

inf
θ̂
sup
PPP

EP rdpθ̂, θpP qqs ě
∆

16
, (2.4)



50 2| Background

where ∆ :“ dpθpP0q, θpP1qq.

Le Cam’s inequality allows to lower bound the minimax risk simply by considering just
two instances of problem from class P . The distance (according to the previously chosen
metric d) between the quantity to be estimated in P0 and P1 allows to lower bound the
risk. Thus, if we aim to solve a certain statistical learning problem in which we aim to
estimate a certain characteristic of an unknown distribution generating data P P P , we
simply have to choose two distributions P0, P1 P P , compute their characteristics, and
then depending on the setting, apply Eq. 2.3 or Eq. 2.4 to bound the risk.

Fano’s Inequality

However, [24] shows that for metrics like dpf, gq :“
ş

pf´gq2 Le Cam’s method usually does
not provide tight bounds. Therefore, it is better to apply Fano’s method, in which instead
of choosing a pair P0, P1 P P of distributions, we choose a finite set of N distributions
P1, . . . , PN P P :

Theorem 10 (Fano’s Inequality). Let F :“ tP1, . . . , PNu Ă P. Let θpP q be a parameter
taking values in a metric space with metric d. Then:

inf
θ̂
sup
PPP

EP rdpθ̂, θpP qqs ě
α

2

´

1 ´
nβ ` log 2

logN

¯

, (2.5)

where
α :“ min

j‰k
dpθpPjq, θpPkqq,

and
β :“ max

j‰k
KLpPj||Pkq.

Corollary 2. Suppose there exist F :“ tP1, . . . , PNu Ă P such that N ě 16 and

β :“ max
j‰k

KLpPj||Pkq ď
logN

4n
,

Then:

inf
θ̂
sup
PPP

EP rdpθ̂, θpP qqs ě
α

4
. (2.6)

Fano keeps into account more than two distributions of class P and uses their distances
and the distances between their characteristics (θ) to provide the bound. But how should
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we build the finite class of distributions F? A possibility is to use the form:

F “
␣

Pω : ω P X
(

,

where
X :“

␣

ω “ pω1, . . . , ωmq : ωi P t0, 1u @i P rms
(

.

is called the hypercube. Thus, there are 2m distributions in F . Let us denote the Hamming
distance between two vectors ω, ν P X with Hpω, νq :“

ř

jPrms

1tωj ‰ νju. However, some

distributions in F might be really close and this might bring to a poor lower bound. One
possible solution is to prune the hypercube, namely to find a subset X 1 Ă X with more or
less the same number of elements of X but such that each pair P,Q P F 1 :“ tPω : ω P X 1u

is far apart. X 1 is called pruned hypercube and we can use the Varshamov-Gilbert lemma
to build it.

Lemma 1 (Varshamov-Gilbert). Let X :“
␣

ω “ pω1, . . . , ωNq : ωi P t0, 1u
(

. Suppose
that N ě 8. There exist ω0, ω1, . . . , ωM P X such that (i) ω0 “ p0, . . . , 0q, (ii) M ě 2N{8

and (iii) Hpωpjq, ωpkqq ě N{8 for 0 ď j ă k ď M . We call X 1 :“ tω0, ω1, . . . , ωMu a
pruned hypercube.

To apply Fano’s inequality to obtain tight bounds, we can firstly use this lemma for finding
the pruned hypercube and then apply the inequality.

2.4.3. Sample Complexity in Reinforcement Learning

The concept of sample complexity, as presented in the previous sections, is related to the
supervised learning setting. In this section, we adapt the notion to the RL setting.

Sampling Models

As Kakade highlights in his doctoral thesis [26], in the RL setting there are two quantities
that might be learned through samples: the transition model p and the reward function
R. However, the interesting quantity to sample is p. To collect a sample for p, the agent
simply has to ask the environment in which state s1 it will end up after having taken
action a from state s. In this way the agent can increase, for instance, visit counters
nps, aq Ð nps, aq ` 1 and nps, a, s1q Ð nps, a, s1q ` 1 and estimate the transition model
with the sample mean p̂ps1|s, aq “

nps,a,s1q

nps,aq
. Kakade identifies three different sampling

strategies in the RL setting:

Forward Model The agent starts to interact with the environment and continues in-
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definitely until a certain number of time steps of exploration has been reached.
This is the most general and complex setting, in which the agent has to devise
an exploration strategy for exploring the environment and visiting most important
state-action pairs in order to collect samples for them. Notice that since the agent
never resets to a certain state/distribution of states, it has to be careful in visit-
ing certain state-action pairs, because they might get it stuck in sub-areas of the
problem.

Generative Model This is the easiest setting. The agent can simply ask the environ-
ment to get a sample from any state-action pair ps, aq he wants without having to
reach it. Since the exploration phase is missing, it is clear that all the pairs are
equally reachable and thus strongest guarantees can be achieved on the estimated
p̂ and therefore on the policy learned afterwards.

µ-Reset Model This is an intermediate sampling strategy between the other two in
terms of difficulty of the task, because we still need an exploration strategy to reach
all the state-action pairs we want, but we are helped in doing so by the possibility
of performing resets to a certain state sampled from distribution µ. In this case, the
complexity will be a function of µ.

In terms of these sampling models, we can provide a more accurate definition of sample
complexity for the RL setting:

Definition 40 (Sample Complexity). We consider the sample complexity to be the number
of calls to the sampling model required to satisfy a specified performance criterion.

The sample complexity, i.e., the number of calls we require to a certain sampling model,
depends on a performance criterion.
It should be noticed that the same notion of sample complexity can be adapted to the
IRL setting, where we still aim to estimate p to solve the task. Indeed, similarly to RL, in
IRL also the expert policy πE might be unknown and might need to be estimated based
on samples, but it is less important than p, analogously to r.

Likelihood Ratio Method

In this section we present the Likelihood Ratio Method, which is one of the most powerful
methods for proving lower bounds to the sample complexity in the bandits7 and RL
settings. This mathematical tool was introduced in [37] to prove a lower bound to the
sample complexity of exploration in the multi-armed bandits problem and then adopted

7The bandits setting can be seen as an RL problem with only one state. The goal is to find the action
(called arm) that provides largest reward.
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by other researchers to prove other bounds in RL (like in the generative model setting
[5]).
The proof idea is the following. We assume (by contradiction) that there exists an pϵ, δq-
correct algorithm that collects, in a certain instance of the problem (say I1), a number of
samples lower than the bound on the sample complexity (say t˚) we want to prove. This
brings to an absurd and thus the algorithm is not pϵ, δq-correct. However, the brilliant idea
lies in the construction of the absurd. To prove that less than t˚ samples are not enough
for instance I1, we introduce another instance, I0. We then consider the likelihood ratio
between the two problem instances. Say W the random variable representing a trajectory
in a problem, we can consider the ratio of its probability between the two settings and
bound such ratio by something 9δ. The final step is to consider the probability of the
event that the algorithm outputs a solution which is not ϵ-correct for I1, call it P1pBq

(where subscript 1 means that the probability concerns problem I1); next, notice that it
coincides with the expectation of the indicator function: P1pBq “ E1r1tBus and finally
insert the likelihood ratio to generate the absurd:

P1pBq “ E1r1tBus “ E0

”L1pW q

L0pW q
1tBu

ı

ą K9δ.

In other words, the two hypotheses that an algorithm is pϵ, δq-correct and that it collects
less than t˚ samples in instance I1 are incompatible, because considering a new instance I0,
whose ϵ-correct solutions are not ϵ-correct for I1, we are able to show that the algorithm
outputs an ϵ-correct solution for I0 when facing instance I1 and collecting less than t˚

samples w.p. greater than δ. This violates the hypothesis of pϵ, δq-correctness, thus any
pϵ, δq-correct algorithm must collect at least t˚ samples.

Bretagnolle-Huber Inequality

The Bretagnolle-Huber inequality is a powerful tool that is widely adopted when con-
structing minimax lower bound proofs in the context of bandits. The Bretagnolle-Huber
inequality can be stated as presented by Lattimore in Theorem 14.2 [32]:

Theorem 11 (Bretagnolle-Huber Inequality). Let P and Q be probability measures on
the same measurable space pΩ,Fq, and let A P F be an arbitrary event. Then,

P pAq ` QpAA
q ě

1

2
expp´DKLpP ||Qqq,

where AA “ ΩzA is the complement of A.

In other words, this theorem allows us to lower bound the sum of probabilities of an event
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and its complement with regards to two different probability measures (defined on the
same measurable space). If we define the event A (and thus also event AA) properly, then
we can lower bound the sum by a function of the KL divergence, which in turn can be
lower bounded by a certain quantity, that depends on the number of samples, exploiting
other theorems. Eventually, we can solve with respect to the number of samples and
obtain the bound on the sample complexity desired.
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The topic of the sample complexity is a very theoretical one, and it is still mostly unex-
plored for IRL. Instead, for the case of RL, (almost) matching bounds have been computed
for a large variety of the problems and quantities of interest. Related works can be classi-
fied in IRL and RL works, and then for the sampling model they use. According to [26], we
can distinguish between the generative model and the forward model. Generative model
means that we have an oracle that allows us to query whatever ps, aq pair we want, while
the forward model requires us to explore the environment to sample the pairs. Another
dimension is whether a paper provides both a lower and upper bound or only an upper
bound. Finally, we can group works based on the setting they are considering, namely
whether they consider the discounted/average infinite-horizon setting or the (discounted)
fixed finite-horizon setting.
We have decided to organize the presentation of the state of the art in three sections,
grouping the main works based on whether they concern Bandits, RL or IRL.

3.1. Sample Complexity in Bandits

As aforementioned, bandits can be seen as RL problems with only one state. The sample
complexity will thus depend only on the number of actions (arms) n :“ |A|, the accu-
racy ϵ and the failure tolerance δ. In [16] an algorithm was proposed for solving the
multi-armed bandit problem with a PAC analysis for the number of time steps to identify
a near-optimal arm; pϵ, δq-correctness was guaranteed after Op n

ϵ2
log 1

δ
q time steps (n is

the number of arms). Paper [37] provides a matching lower bound. Notice that [37] is
the fundamental paper that introduces the Likelihood Ratio Method presented in Subsec-
tion 2.4.3 for computing lower bounds through a proof by absurd. In [32], some lower
bounds are developed using an alternative demonstration method, the one based on the
Bretagnolle-Huber inequality.
It should be remarked that, for bandits, we have matching lower and upper bounds.



56 3| State of the Art

3.2. Sample Complexity in Reinforcement Learning

With regards to RL, we can have more than one state, therefore, the bounds will depend
also on |S|. Historically, one of the first important works on the sample complexity of RL
is [26]. Moving to the RL discounted infinite-horizon setting under generative model, the
paper that found matching bounds for the estimation of the action-value function in max
norm is [5], where a matching bound of Θp N

ϵ2p1´γq3
log N

δ
q, where γ is the discount factor

ad N :“ |S ˆA| is the size of the state-action space, is proved by exploiting the likelihood
ratio method. Such result improves on the previous best lower bound of Ω̃p N

ϵ2p1´γq2
q of

[3, 17] and the previous best upper bound of Õp N
ϵ2p1´γq4

q proved for some algorithms like
[4] for instance. If we consider the episodic fixed-horizon setting for RL, then paper [12]
is the most interesting result, since the algorithm it proposes, UCFH, produces an upper
bound of Op

|S|2|A|H2

ϵ2
log 1

δ
q to the number of episodes required (H is the length of each

episode) to provide an ϵ-optimal estimate of the value function; moreover, [12] proves a
lower bound of Ωp

|S||A|H2

ϵ2
log 1

δ`c
q (where c is a constant), so it is clear that the bounds

are almost matching. Previous works in this setting are not worthy to be mentioned. For
the general RL problem, [33] proposes an algorithm, MERL, with a sample complexity of
Op N

ϵ2p1´γq3
log2 N

δϵp1´γq
q, and proves a matching lower bound except for logarithmic factors.

3.3. Sample Complexity in Inverse Reinforcement Learn-

ing

The works can be grouped based on the setting they are considering and on the quantity
to be estimated.

3.3.1. Sample Complexity for Estimating the Feasible Reward

Set

The notion of feasible reward set R was introduced in [42] in an implicit form in the
infinite-horizon discounted case as a linear feasibility problem and, subsequently, adapted
to the finite-horizon case in [36]. Furthermore, in [36, 39] an explicit form of the reward
functions belonging to the feasible region R was provided. In these works, the problem
of estimating the feasible reward set is studied for the first time considering a “reference”
pair of rewards pr, qrq P R ˆ pR against which to compare the rewards inside the recovered
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sets, leading to the (pre)metric:

rHdpR,R, r, qrq :“ max

"

inf
prP pR

dpr, prq, inf
rPR

dpr, qrq

*

. (3.1)

Compared to the Hausdorff (pre)metric, in Equation (3.1) there is no maximization over
the choice of pr, qrq, leading to a simpler problem.1 In [39], a uniform sampling approach
(similar to Algorithm 10) is proved to achieve a sample complexity of order rO

´

γ2|S||A|

p1´γq4ϵ2

¯

for
the index of Equation (3.1) with d “ dG

Q˚
2 in the discounted setting with generative model.

For the forward model case, the AceIRL algorithm [36] suffers a sample complexity of
order rO

´

H5|S||A|

ϵ2

¯

for the index of Equation (3.1) with d “ dF
V ˚ , in the finite-horizon case.

Unfortunately, the reward recovered by AceIRL reward function is not guaranteed to be
bounded by a predetermined constant (e.g., r´1, 1s). Modified versions of these algorithms
allow embedding problem-dependent features under a specific choice of a reward within
the set.

3.3.2. Sample Complexity Lower Bounds in IRL

The only work found that proposes a sample complexity lower bound for IRL is [31].
The authors consider a finite state and action MDP\R and the IRL algorithm of [42] for
β-strict separable IRL problems (i.e., with suboptimality gap at least β) with state-only
rewards in the discounted setting. When only two actions are available (|A| “ 2) and
the samples are collected starting in each state with equal probability, by means of a
geometric construction and Fano’s inequality, the authors derive an Ωp|S| log |S|q lower
bound on the number of trajectories needed to identify a reward function. Note that this
analysis limits to the identification of a reward function within a finite set, rather than
evaluating the accuracy of recovering the feasible reward set.

3.3.3. Sample Complexity of IRL Algorithms

Differently from forward RL, the theoretical understanding of the IRL problem is largely
less established and the sample complexity analysis proposed in the literature often limit
to specific algorithms. In the class of feature expectation approaches, the seminal work [1]
propose IRL algorithms guaranteed to output an ϵ-optimal policy (made of a mixture of
Markov policies) after rO

´

k
ϵ2p1´γq2

log
`

1
δ

˘

¯

trajectories (ideally of infinite length). The re-
sult holds in a discounted setting (being γ the discount factor) under the assumption that

1In this sense, a PAC guarantee according to Definition 41, implies a PAC guarantee defined w.r.t.
(pre)metric of Equation (3.1).

2where dG
Q˚ pr, prq :“ maxps,a,hqPSˆAˆJHK |Q˚

hps, a; rq ´ Q˚
hps, a; prq|
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the true reward function rpsq “ wTϕpsq is state-only and linear in some known features ϕ
of dimensionality k. In [53], a game-theoretic approach to IRL, named MWAL, is proposed
improving [1] in terms of computational complexity and allowing the absence of an expert,
preserving similar theoretical guarantees in the same setting. Modular IRL [57], that inte-
grates supervised learning capabilities in the IRL algorithm, is guaranteed to produce an
ϵ-optimal policy after rO

´

|S||A|

p1´γq2ϵ2
log

`

1
δ

˘

¯

trajectories. This class of algorithms, however,
requires, as an inner step, to compute the optimal policy pπ for every candidate reward
function pr. This step (and the corresponding sample complexity) is somehow hidden in
the analysis since they either assume the knowledge of the transition model and apply
dynamic programming [e.g., 57] or the access to a black-box RL algorithm [e.g., 1]. In the
class of maximum entropy approaches [61], the Maximum Likelihood IRL [60] converges
to a stationary solution with rOpϵ´2q trajectories for non-linear reward parametrization
(with bounded gradient and Lipschitz smooth), when the underlying Markov chain is
ergodic. Furthermore, the authors prove that, when the reward is linear in some fea-
tures, the recovered solution corresponds to Maximum Entropy IRL [61]. Concerning the
gradient-based approaches, [44] and [47] prove finite-sample convergence guarantee to the
expert’s weight under linear parametrization as a function of the accuracy of the gradient
estimation. Surprisingly, a theoretical analysis of the IRL progenitor algorithm of [42] has
been proposed only recently in [30]. A β-strict separability setting is enforced in which
the rewards are assumed to lead to a suboptimality gap of at least β ą 0 when playing
any non-optimal action. For finite MDPs, known expert’s policy, under the demanding
assumption that each state is reachable in one step with a minimum probability α ą 0,
and focusing on state-only reward, the authors prove that the algorithm outputs a β-strict
separable feasible reward in at most rO

´

1`γ2Ξ2

αβ2p1´γq4
log

`

1
δ

˘

¯

trajectories, where Ξ ď S is the
number of possible successor states. Recently, an approach with theoretical guarantees
has been proposed for continuous states [14].

3.3.4. Reward-Free Exploration

Reward-free exploration [RFE, 23, 27, 38] is a setting for pure exploration in MDPs
composed of two phases: exploration and planning. In the exploration phase, the agent
learns an estimated transition model pp without any reward feedback. In the planning
phase, the agent is faced with a reward function r and has to output an estimated optimal
policy pπ˚, using pp since no further interaction with the environment is admitted. In
this sense, RFE shares this two-phase procedure with our IRL problem, but, instead
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of the planning phase, we face the computation of the feasible reward set.3 In RFE
exploration, the sample complexity is computed against the performance of the learned
policy pπ˚ under the reward r, i.e., V ˚p¨; rq ´ V pπ˚

p¨; rq, whose lower bound of the sample
complexity has order Ω

´

H2|S||A|

ϵ2

`

H log
`

1
δ

˘

` |S|
˘

¯

[23, 27]. The best known algorithm,
RF-Express, proposed in [38] archives an almost-matching sample complexity of order
Ω
´

H3|S||A|

ϵ2

`

log
`

1
δ

˘

` |S|
˘

¯

. The relevant connection with this thesis is the fact that
the derivation of the lower bounds shares similarity especially in the construction of the
instances. Nevertheless, in the time-inhomogeneous case, the achieved lower bound is
higher of order Ω

´

H3|S||A|

ϵ2

`

log
`

1
δ

˘

` |S|
˘

¯

. The connection between IRL and RFE should
be investigated in future works, as also mentioned in [36].

3As shown in previous works, the computation of the feasible reward set can be formulated with a
linear feasibility problem [42].
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In this section, the regularity properties of the feasible reward set in terms of the Lipschitz
continuity w.r.t. the IRL problem are analyzed. To make the idea more concrete, suppose
that R is the feasible reward set obtained from the IRL problem pM, πEq and that pR is
obtained with a different IRL problem p xM, pπEq, which we can think to as an empirical
version of pM, πEq, with an estimated transition model pp replacing the true model p.
Intuitively, to have any learning guarantee, similar IRL problems (p « pp and πE « pπE)
should lead to similar feasible reward sets (R « pR).1

To formally define a Lipschitz framework, we need to select a (pre)metric for evaluating
dissimilarities between feasible reward sets and IRL problems. While we defer the pre-
sentation of the (pre)metric for the IRL problems to Section 4.1, where it will emerge
naturally, for the feasible reward sets, we employ the Hausdorff (pre)metric HdpR, pRq

(Equation 2.1), induced by a (pre)metric dpr, prq used to evaluate the dissimilarity be-
tween individual reward functions r P R and pr P pR. With this choice, two feasible reward
sets are “similar” if every reward r P R is “similar” to some reward pr P pR in terms of
the (pre)metric d. In the next sections, the metric induced by the L8-norm between the
reward functions r P R and pr P pR is employed as d :2

dG
pr, prq :“ max

ps,a,hqPSˆAˆJHK
|rhps, aq ´ prhps, aq| , (4.1)

where G stands for “generative”. In Subsection 4.1, the proof that the Lipschitz continuity
is fulfilled when no restrictions on the reward function are enforced (besides boundedness
in r´1, 1s) is provided. Then, in Subsection 4.2, it is shown that, when further restrictions
on the viable rewards are required (e.g., state-only reward), such a regularity property no
longer holds.

1If not, any arbitrary accurate estimate ppp, pπEq of pp, πEq, may induce feasible sets pR and R with
finite non-zero dissimilarity.

2Other choices of d are discussed in Section 5.
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4.1. Lipschitz Continuous Feasible Reward Sets

In order to prove the Lipschitz continuity property, let us use the explicit form of the
feasible reward sets introduced in [39] and extended by [36] for the finite-horizon case,
that is reported below.

Lemma 2 (Lemma 4 of [36]). A reward function r “ prhqhPJHK is feasible for the IRL
problem pM, πEq if and only if there exist two functions pAh, VhqhPJHK where for every
h P JHK we have Ah : S ˆ A Ñ Rě0, Vh : S ˆ A Ñ R, and VH`1 “ 0, such that for every
ps, a, hq P S ˆ A ˆ JHK it holds that:

rhps,aq“´Ahps,aq1tπE
h pa|sq“0u `Vhpsq´phVh`1ps,aq.

Furthermore, if |rhps, aq| ď 1, if follows that |Vhpsq| ď H ´h`1 and Ahps, aq ď H ´h`1.

A form of regularity of the feasible reward set was already studied in Theorem of 3.1 of [39]
and in Theorem 5 of [36], providing an error propagation analysis. These results are based
on showing the existence of a particular reward rr feasible for the IRL problem p xM, pπEq,
whose distance from the original reward function r P R is bounded by a dissimilarity term
between pM, πEq and p xM, pπEq. Unfortunately, such a reward rr is not guaranteed to be
bounded in r´1, 1s even when the original reward r is (and, thus, it might be rr R pR).3 In
Lemma 3, with a modified construction, it is shown the existence of another particular
feasible reward pr bounded in r´1, 1s (and, thus, pr P pR). From this, the Lipschitz continuity
of the feasible reward sets follows.

Theorem 12 (Lipschitz Continuity). Let R and pR be the feasible reward sets of the IRL
problems pM, πEq and p xM, pπEq. Then, it holds that:4

HdGpR, pRq ď
2ρGppM, πEq, p xM, pπEqq

1 ` ρGppM, πEq, p xM, pπEqq
, (4.2)

where ρGp¨, ¨q is a (pre)metric between IRL problems, defined as:

ρG
ppM,πE

q,p xM,pπE
qq:“ max

ps,a,hqPSˆAˆJHK
pH´h`1q

ˆ

´
ˇ

ˇ

ˇ
1tπE

h pa|sq“0u´1tpπE
h pa|sq“0u

ˇ

ˇ

ˇ
`}php¨|s,aq´pphp¨|s,aq}1

¯

.

Some observations are in order. First, the function ρG is indeed a (pre)metric since it is
3An example of this phenomenon is illustrated in Fact 1.
4This implies the standard Lipschitz continuity, by simply bounding 2ρG

ppM,πE
q,p xM,pπE

qq

1`ρGppM,πEq,p xM,pπEqq
ď

2ρGppM, πEq, p xM, pπEqq.
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non-negative and takes value 0 when the IRL problems coincide. Second, as supported
by intuition, ρG is composed of two terms related to the estimation of the expert’s policy
and of the transition model. While for the transition model, the dissimilarity is formal-
ized by the L1-norm distance }php¨|s, aq ´ pphp¨|s, aq}1, for the policy, the resulting term
deserves some comments. Indeed, the dissimilarity |1tπE

h pa|sq“0u ´ 1tpπE
h pa|sq“0u| highlights

that what matters is whether an action a P A is played by the expert and not the cor-
responding probability πE

h pa|sq. Indeed, the expert’s policy plays an action (with any
non-zero probability) only if it is an optimal action.

To prove Theorem 12, we need the following lemma:

Lemma 3. Let r be feasible for the IRL problem pM, πEq bounded in r´1, 1s (i.e., pr P R)
and defined according to Lemma 2 as rhps, aq “ ´Ahps, aq1tπE

h pa|sq“0u`Vhpsq´phVh`1ps, aq.
Let p xM, pπEq be an IRL problem and define for every ps, a, hq P S ˆ A ˆ JHK:

ϵhps, aq :“ ´Ahps, aq

´

1tπE
h pa|sq“0u ´ 1tpπE

h pa|sq“0u

¯

` ppph ´ pphqVh`1q ps, aq.

Then, the reward function pr defined according to Lemma 2 as prhps, aq “ ´ pAhps, aq1tpπE
h pa|sq“0u`

pVhpsq ´ phpVh`1ps, aq for every ps, a, hq P S ˆ A ˆ JHK with:

pAhps, aq “
Ahps, aq

1 ` ϵ
, pVhpsq “

Vhpsq

1 ` ϵ
, pVH`1psq “ 0.

where ϵ :“ maxps,a,hqPSˆAˆJHK |ϵhps, aq|, is feasible for the IRL problem p xM, pπEq and
bounded in r´1, 1s (i.e., pr P pR).

Proof. Given the reward function rhps, aq “ ´Ahps, aq1tπE
h pa|sq“0u ` Vhpsq ´ phVh`1ps, aq,

we define the reward function:

rrhps, aq “ ´Ahps, aq1tpπE
h pa|sq“0u ` Vhpsq ´ pphVh`1ps, aq,

that, thanks to Lemma 2, makes policy pπE optimal. However, it is not guaranteed that
rr P pR since it can take values larger than 1. Thus, we define the reward:

prhps, aq “
rrhps, aq

1 ` ϵ
“ ´

Ahps, aq

1 ` ϵ
1tpπE

h pa|sq“0u `
Vh

1 ` ϵ
psq ´ pph

Vh`1

1 ` ϵ
ps, aq,

which simply scales rrh and preserves the optimality of pπE. We now prove that prhps, aq is
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bounded in r´1, 1s. To do so, we prove that rrhps, aq is bounded in r´p1 ` ϵq, p1 ` ϵqs:

|rrhps, aq| ď |rhps, aq| ` |rrhps, aq ´ rhps, aq|

“ 1 `

ˇ

ˇ

ˇ
´Ahps, aq1tpπE

h pa|sq“0u ` pphVh`1psq ´

´

´Ahps, aq1tπE
h pa|sq“0u ` phVh`1psq

¯
ˇ

ˇ

ˇ

“ 1 ` |ϵhps, aq| ď 1 ` ϵ.

We are now able to prove Theorem 12.

Proof. Let rr as defined in the proof of Lemma 3. Then, we have:

|rhps, aq ´ prhps, aq| “

ˇ

ˇ

ˇ

ˇ

rhps, aq ´
rrhps, aq

1 ` ϵ

ˇ

ˇ

ˇ

ˇ

ď
1

1 ` ϵ
p|rhps, aq ´ rrhps, aq| ` ϵ |rhps, aq|q

ď
2ϵ

1 ` ϵ
.

By recalling that 2ϵ
1`ϵ

is a non-decreasing function of ϵ, we bound it by replacing ϵ with
an upper bound:

ϵ “ max
ps,a,hqPSˆAˆJHK

|ϵhps, aq|

ď max
ps,a,hqPSˆAˆJHK

pH ´ h ` 1q

”ˇ

ˇ

ˇ
1tπE

h pa|sq“0u ´ 1tpπE
h pa|sq“0u

ˇ

ˇ

ˇ
` }php¨|s, aq ´ pphp¨|s, aq}1

ı

“: ρG
ppM, πE

q, p xM, pπE
qq,

where we used Hölder’s inequality recalling that |Vh`1ps, aq| ď H ´ h and |Ahps, aq| ď

H ´ h ` 1. Clearly, ρGppM, πEq, p xM, pπEqq is a (pre)metric.

Fact 1. There exist two MDP\R M and xM with transition models p and pp respectively, an
expert’s policy πE and a reward function rhps, aq “ ´Ahps, aq1tπEpa|sq“0u`Vhpsq´phVh`1psq

feasible for the IRL problem pM, πEq bounded in r´1, 1s (i.e., r P R) such that the reward
function prhps, aq “ ´Ahps, aq1tπEpa|sq“0u `Vhpsq´pphVh`1psq is feasible for the IRL problem
p xM, πEq not bounded in r´1, 1s.

Proof. We consider the MDP\R in Figure 4.1 with optimal policy and reward function
defined for every h P JHK and H “ 10 as:

πE
h ps1q “ a1, π

E
h ps2q “ a2,

rhps1, a1q “ rhps2, a1q “ 0, rhps1, a2q “ ´1, rhps2, a2q “ 1.
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Simple calculations lead to the V-function and advantage function values:

V πE

h ps1q “ 0, V πE

h ps2q “ H ´ h ` 1,

AπE

h ps1, a1q “ 0, AπE

h ps1, a2q “ ´1 ` pH ´ hq{10

AπE

h ps2, a1q “ ´1 ´ pH ´ hq{10, AπE

h ps2, a2q “ 0.

We consider as alternative transition model pp “ 1 ´ p. After tedious calculations we
obtain the alternative reward function:

prhps1, a1q “ ´pH ´ hq,

prhps1, a2q “ ´1 ` 8pH ´ hq{10,

prhps2, a1q “ 8pH ´ hq{10,

prhps2, a2q “ H ´ h.

It is simple to observe that for some ps, a, hq we have |prhps, aq| ą 1.

s1 s2a1 a2

a2

a1

9{10

1{10

1{10

9{10

Figure 4.1: The MDP\R employed in Fact 1.

4.2. Non-Lipschitz Continuous Feasible Reward Sets

In this section, three cases of feasible reward sets restrictions that turn out not to fulfill
the condition of Theorem 12 are illustrated. These examples consider three conditions
commonly enforced in the literature: state-only reward function rhpsq (Example 1), time-
homogeneous reward function rps, aq (Example 2), and β-margin reward function (Exam-
ple 3). Counter-examples are presented in which in front of ϵ-close transition models, the
induced feasible sets are far apart by a constant independent of ϵ.

Example 1 (State-only reward rhpsq). State-only reward functions have been widely con-
sidered in many IRL approaches [e.g., 1, 30, 42, 53]. Let us formalize the state-only
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s0

s´

s`

a1

a2

1{2

1{2

1

1

(a)

s0 s1

a1

a2

1{2

1{2

1

(b)

Figure 4.2: The MDP\R employed in the examples of Section 4.2. The arrow with
double border denotes a transition executed for multiple actions.

feasible reward set as follows:

Rstate “ R X t@ps, a, a1, hq : rhps, aq “ rhps, a1
qu.

Consider the MDP\R of Figure 4.2a with H “2, πE
h ps0q“pπE

h ps0q“a1 with hPt1,2u. Set
p1ps`|s0,a1q“1{2`ϵ{4 and pp1ps`|s0,a1q“1{2´ϵ{4 and, thus, }p1p¨|s0,a1q´pp1p¨|s0,a1q}1 “

ϵ. Let us set r2ps`q“1 and r2ps´q“´1, which makes πE optimal under p. We observe
that pR is defined by pr2ps´qďpr2ps`q. Recalling that the rewards are bounded in r´1,1s, we
have HdGpRstate, pRstateqě1.

Proof. For the MDP\R M, in order to make πE
1 ps0q “ a1 optimal, we have to enforce:

r1ps0q `
2 ` ϵ

4
r2ps`q `

2 ´ ϵ

4
r2ps´q ě r1ps0q `

1

2
r2ps`q `

1

2
r2ps´q

ùñ r2ps`q ě r2ps´q.

Similarly, to make pπE
1 ps0q “ a1, we have for xM:

pr1ps0q `
2 ´ ϵ

4
pr2ps`q `

2 ` ϵ

4
pr2ps´q ě pr1ps0q `

1

2
pr2ps`q `

1

2
pr2ps´q

ùñ pr2ps`q ď pr2ps´q.
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Thus, suppose, we set r2ps´q “ 1 and r2ps`q “ ´1, we have:

HdGpRstate, pRstateq ě min
pr2ps´q,pr2ps`qPr´1,1s

pr2ps`qďpr2ps´q

max t|1 ´ pr2ps´q|, | ´ 1 ´ pr2ps`q|u “ 1.

Example 2 (Time-homogeneous reward rps, aq). Time-homogeneous reward functions
have been employed in several RL [e.g., 12] and IRL settings [e.g., 36]. Let us formalize
the time-homogeneous feasible reward set as follows:

Rhom “ R X t@ps, a, h, h1
q : rhps, aq “ rh1ps, aqu.

Consider the MDP\R of Figure 4.2b with H “2, πE
1 ps0q“pπE

1 ps0q“a1 and πE
2 ps0q“pπE

2 ps0q“

a2. For hPt1,2u, set phps0|s0,a1q“1{2`ϵ{4 and pphps0|s0,a1q“1{2´ϵ{4, thus, }php¨|s0,a1q´

pphp¨|s0,a1q}1 “ϵ. Set also rps0,a1q“1, rps0,a2q“1´ϵ{6, and rps1,a1q“rps1,a2q“1{2

making πE optimal. It can be proved that HdGpRhom, pRhomqě1{4.

Proof. Consider the MDP\R M and we set rps0, a1q “ 1, rps0, a2q “ 1 ´ ϵ{12, and
rps1, aq “ 1{2 for a P ta1, a2u. We immediately observe that πE is optimal since for h “ 2,
rps0, a1q ě rps0, a2q and for h “ 1:

rps0, a2q `
2 ` ϵ

4
rps0, a1q `

2 ´ ϵ

4
rps1, aq ě rps0, a1q `

1

2
rps0, a1q `

1

2
rps1, aq

ðñ rps0, a2q `

´ ϵ

4
´ 1

¯

rps0, a1q ´
ϵ

4
rps1, aq ě 0

ðñ 1 ´
ϵ

12
`

ϵ

4
´ 1 ´

ϵ

8
ě 0.

Consider now the alternative MDP\R xM, we have to enforce the following two conditions:

prps0, a1q ě prps0, a2q,

prps0, a2q `
2 ´ ϵ

4
prps0, a1q `

2 ` ϵ

4
prps1, aq ě prps0, a1q `

1

2
prps0, a1q `

1

2
prps1, aq

ðñ prps0, a2q ´

´ ϵ

4
` 1

¯

prps0, a1q `
ϵ

4
prps1, aq ě 0.

(4.3)

(4.4)

The way of enforcing Equation (4.3) that is less constraining for Equation (4.4) is setting
prps0, a1q “ prps0, a2q, to get:

´
ϵ

4
prps0, a1q `

ϵ

4
prps1, aq ě 0 ðñ prps1, aq ě prps0, a1q.
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This implies:

HdGpRhom, pRhomq ě min
prps1,aq,prps0,a1qPr´1,1s

prps1,aqěprps0,a1q

max

"

|1 ´ prps0, a1q| ,

ˇ

ˇ

ˇ

ˇ

1

2
´ prps1, aq

ˇ

ˇ

ˇ

ˇ

*

ě
1

4
,

by setting prps0, a1q “ prps1, aq “ 1{4.

Example 3 (β-margin reward). A β-margin reward enforces a suboptimality gap of at
least β ą 0 [30, 42]. We formalize it in the finite-horizon case with a sequence β “

pβhqhPJHK, possibly different for every stage:

Rβ-mar “RXt@ps,a,hq : AπE

h ps,a;rqPt0uYp´8,´βhsu.

Consider the MDP\R in Figure 4.2a with πE
h ps0q “ pπE

h ps0q “ a1 for h P t1, 2u. We set
p1ps`|s0, a1q “ 1{2 ` ϵ and pp1ps`|s0, a1q “ 1{2 ´ ϵ. We set for MDP\R M the reward
function as r1ps0, aq “ 0 and rhps`, aq “ ´rhps´, aq “ 1 for a P ta1, a2u and h P J2, HK.
In ps0, 1q the suboptimality gap is β1 “ 2 ` 2ϵpH ´ 1q. By selecting H ě 1 ` 1{ϵ, the
feasible set pRβ-mar is empty.

Proof. Concerning the MDP\R M, we observe that by setting r1ps0, a1q “ 1, r1ps0, a2q “

´1, and rhps`, aq “ ´rhps´, aq “ 1 for a P ta1, a2u and h P J2, HK, the policy πE

is optimal. In particular, in state-stage pair ps0, 1q the suboptimality gap is given by
β1 “ 2 ` 2ϵpH ´ 1q. To enforce the optimality of pπE “ πE in the MDP\R xM, we have:

pr1ps0, a1q `

H
ÿ

h“2

1

2
prhps`, a1q `

1

2
prhps´, a1q ě pr1ps0, a2q `

H
ÿ

h“2

1

2
prhps`, a1q `

1

2
prhps´, a1q ` β1

ðñ pr1ps0, a1q ´ pr1ps0, a2q ě β1.

Thus, if β1 ě 2, we have that the feasible set pRβ-sep is empty. Thus, we select H ě 1`1{ϵ

to have β1 ě 4.

These examples show that, under certain classes of restrictions, the feasible reward set is
not Lipschitz continuous w.r.t. the transition model and, more in general, w.r.t. the IRL
problem.
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a generative Model

In this section, we discuss the PAC (Probably Approximately Correct) requirements for
estimating the feasible reward set with access to a generative model of the environment.
We first provide the notion of a learning algorithm estimating the feasible reward set with
a generative model (Section 5.1). Then, we formally present the PAC requirement for the
Hausdorff (pre)metric Hd (Section 5.2). Finally, we discuss the relationships between the
PAC requirements with different choices of (pre)metric d (Section 5.2.1).

5.1. Learning Algorithms with a Generative Model

A learning algorithm for estimating the feasible reward set is a pair A “ pµ, τq, where µ “

pµtqtPN is a sampling strategy defined for every time step t P N as µt P ∆
SˆAˆJHK
Dt´1

with Dt “

pSˆAˆJHKˆSˆAqt and τ is a stopping time w.r.t. a suitably defined filtration. At every
step t P N, the learning algorithm query the environment in a triple pst, at, htq, selected
based on the sampling strategy µtp¨|Dt´1q, where Dt´1 “ ppsl, al, hl, s

1
l, a

E
l qq

t´1
l“1 P Dt´1 is

the dataset of past samples. Then, the algorithm observes the next state s1
t „ phtp¨|st, atq

and expert’s action aEt „ πE
ht

p¨|stq and updates the dataset Dt “ Dt´1 ‘ pst, at, ht, s
1
t, a

E
t q.

Based on the collected data Dτ , the algorithm computes the empirical IRL problem
pxM τ , pπE,τ q, based on Equation (7.1) and the empirical feasible reward set pRτ .

5.2. PAC Requirement

We now introduce a general notion of a PAC requirement for estimating the feasible reward
set of an IRL problem. To this end, we consider the Hausdorff (pre)metric introduced in
Section 4 defined in terms of the reward (pre)metric dpr, prq. We denote with d-IRL the
problem of estimating the feasible reward set under the Hausdorff (pre)metric Hd.

Definition 41 (PAC Algorithm for d-IRL). Let ϵ P p0, 2q and δ P p0, 1q. An algorithm
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A “ pµ, τq is pϵ, δq-PAC for d-IRL if:

P
pM,πEq,A

´

HdpR, pRτ
q ď ϵ

¯

ě 1 ´ δ,

where PpM,πEq,A denotes the probability measure induced by executing the algorithm A in
the IRL problem pM, πEq and pRτ is the feasible reward set induced by the empirical IRL
problem p xMτ , pπE,τ q estimated with the dataset Dτ . The sample complexity is defined as
τ :“ |Dτ |.

In the next section, we show the relationship between PAC requirements defined for
notable choices of d.

5.2.1. Different Choices of d

So far, we have evaluated the dissimilarity between the feasible reward sets by means of
the Hausdorff induced by dG, i.e., the L8-norm between individual reward functions. In
the literature, other (pre)metrics d have been proposed [e.g., 36, 39].

dG
Q˚-IRL

Since the recovered reward functions are often used for performing forward RL, an index of
interest is the dissimilarity between optimal Q-functions obtained with the reward r P R
and pr P pR in the original MDP\R:

dG
Q˚pr, prq :“ max

ps,a,hqPSˆAˆJHK
|Q˚

hps, a; rq ´ Q˚
hps, a; prq| .

dG
V ˚-IRL

We are often interested in not just being accurate in estimating the optimal Q-function,
but rather in the performance of an optimal policy pπ˚, learned with the recovered reward
pr P pR, evaluated under the true reward r P R:

dG
V ˚pr, prq :“ sup

pπ˚PΠ˚pprq

max
ps,hqPSˆJHK

ˇ

ˇ

ˇ
V ˚
h ps; rq ´ V pπ˚

h ps; rq

ˇ

ˇ

ˇ

where Π˚pprq:“tπ :@ps,a,hqPSˆAˆJHK:Aπ
hps,a;prqď0u is the set of optimal policies under

the recovered reward pr.

The following result formalizes the relationships between the presented d-IRL problems.

Theorem 13 (Relationships between d-IRL problems). Let us introduce the graphical
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convention for c ą 0:

x-IRL y-IRLc

meaning that any pϵ, δq-PAC x-IRL algorithm is pcϵ, δq-PAC y-IRL. Then, the following
statements hold:

dG-IRL dG
Q˚-IRL dG

V ˚-IRL .

2H

H 2H

Theorem 13 shows that any pϵ, δq-PAC guarantee on dG, implies pϵ1, δq-PAC guarantees
on both dG

Q˚ and dG
V ˚ , where ϵ1 “ ΘpHϵq is linear in the horizon H. This justifies why

focusing on dG-IRL, as in the following section where sample complexity lower bounds
are derived. The lower bound analysis for dG

Q˚-IRL and dG
V ˚-IRL is left to future works.

Proof. Let A be an pϵ, δq-PAC dG-IRL algorithm. This means that with probability at
least 1´δ, we have that for any IRL problem HdGpR, pRτ q ď ϵ. We introduce the following
visitation distributions, defined for every s, s1 P S, h, l P JHK with l ě h, and a, a1 P A:

ηπs,a,h,lps
1, a1

q “ P
M,π

psl “ s1, al “ a1
|sh “ s, ah “ aq ,

ηπs,h,lps
1, a1

q “
ÿ

aPA
πhpa|sqηπs,a,h,lps

1, a1
q.

dG-IRL Ñ dG
Q˚-IRL Let us consider the optimal Q-function difference and let π˚ an

optimal policy under the reward function r, we have:

Q˚
hps, a; rq ´ Q˚

hps, a; prq ď Qπ˚

h ps, a; rq ´ Qπ˚

h ps, a; prq

“

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,a,h,lps
1, a1

qprlps
1, a1

q ´ prlps
1, a1

qq

ď max
ps,a,hqPSˆAˆJHK

|rhps, aq ´ prhps, aq|

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,a,h,lps
1, a1

q

loooooooooooomoooooooooooon

“1

“ pH ´ h ` 1q max
ps,a,hqPSˆAˆJHK

|rhps, aq ´ prhps, aq|

ď H max
ps,a,hqPSˆAˆJHK

|rhps, aq ´ prhps, aq|.
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As a consequence, we have:

HdG
Q˚

pR, pRτ
q ď HHdGpR, pRτ

q.

dG-IRL Ñ dG
V ˚-IRL Let us consider the value functions and let π˚ (resp. pπ˚) be an

optimal policy under reward function r (resp. pr), we have:

V ˚
h ps; rq ´ V pπ˚

h ps; rq “ V π˚

h ps; rq ´ V pπ˚

h ps; rq ˘ V pπ˚

h ps; prq

ď V π˚

h ps; rq ´ V π˚

h ps; prq ` V pπ˚

h ps; prq ´ V pπ˚

h ps; rq

“

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,h,lps
1, a1

qprlps
1, a1

q ´ prlps
1, a1

qq`

`

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηpπ
˚

s,h,lps
1, a1

qprlps
1, a1

q ´ prlps
1, a1

qq

ď max
ps,a,hqPSˆAˆJHK

|rhps, aq ´ prhps, aq|¨

¨

¨

˝

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,h,lps
1, a1

q `

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηpπ
˚

s,h,lps
1, a1

q

˛

‚

“ 2pH ´ h ` 1q max
ps,a,hqPSˆAˆJHK

|rhps, aq ´ prhps, aq|

ď 2H max
ps,a,hqPSˆAˆJHK

|rhps, aq ´ prhps, aq|.

Thus, it follows that:
HdG

V ˚
pR, pRτ

q ď 2HHdGpR, pRτ
q.

dG
Q˚-IRL Ñ dG

V ˚-IRL To prove this result, we need to introduce further tools. Specifically,
we introduce the Bellman expectation operator and the Bellman optimal operator, defined
for a reward function r, policy π, ps, hq P S ˆ JHK and function f : S Ñ R:

T ˚
r,hfpsq “ max

aPA
trhps, aq ` phfps, aqu , T π

r,hfpsq “ πh prhps, aq ` phfps, aqq .

We recall the fixed-point properties: T ˚
r,hV

˚
h “ V ˚

h and T π
r,hV

π
h “ V π

h . Let π˚ (resp. pπ˚) be
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an optimal policy under reward r (resp. pr). Let us consider the following derivation:

V ˚
h ps; rq ´ V pπ˚

h ps; rq “ T ˚
r,hV

˚
h ps; rq ´ T pπ˚

r,hV
pπ˚

h ps; rq˘

˘ T π˚

r,hV
˚
h ps; prq ˘ T π˚

pr,hV
˚
h ps; prq ˘ T ˚

pr,hV
˚
h ps; prq ˘ T pπ˚

r,hV
pπ˚

h ps; prq

“ T π˚

r,hV
˚
h ps; rq ´ T π˚

r,hV
˚
h ps; prq ` T π˚

r,hV
˚
h ps, prq´

´ T π˚

pr,hV
˚
h ps; prq ` T π˚

pr,hV
˚
h ps; prq ´ T ˚

pr,hV
˚
h ps; prq

loooooooooooooooomoooooooooooooooon

ď0

` T pπ˚

pr,hV
˚
h ps; prq ´ T pπ˚

r,hV
˚
h ps; prq ` T pπ˚

r,hV
˚
h ps; prq ´ T pπ˚

r,hV
˚
h ps; rq

“ π˚
hphpV ˚

h`1p¨; rq ´ V ˚
h`1p¨; prqqpsq ` π˚

hprh ´ prhqpsq

` pπ˚
hpprh ´ rhqpsq ` pπ˚phpV ˚

h`1p¨; prq ´ V pπ˚

h`1p¨; rqqpsq

“ pπ˚
h ´ pπ˚

hqpQ˚
hp¨; rq ´ Q˚

hp¨; prqqpsq ` pπ˚phpV ˚
h`1p¨; rq ´ V pπ˚

h`1p¨; rqqpsq.

Let us apply the L8-norm over the state space and the triangular inequality, we have:
›

›

›
V ˚
h p¨; rq ´ V pπ˚

h p¨; rq

›

›

›

8
ď }pπ˚

h ´ pπ˚
hqpQ˚

hp¨; rq ´ Q˚
hp¨; prqqp¨q}

8
`

`

›

›

›
pπ˚phpV ˚

h`1p¨; rq ´ V pπ˚

h`1p¨; rqqp¨q

›

›

›

8

ď 2 }Q˚
hp¨; rq ´ Q˚

hp¨; prqqp¨q}
8

`

›

›

›
V ˚
h`1p¨; rq ´ V pπ˚

h`1p¨; rq

›

›

›

8
.

By unfolding the recursion over h, we obtain:

›

›

›
V ˚
h p¨; rq ´ V pπ˚

h p¨; rq

›

›

›

8
ď 2

H
ÿ

l“h`1

}Q˚
l p¨; rq ´ Q˚

l p¨; prqqp¨q}
8
.

Thus, we have:

max
ps,hqPSˆJHK

ˇ

ˇ

ˇ
V ˚
h ps; rq ´ V pπ˚

h ps; rq

ˇ

ˇ

ˇ
ď 2H max

ps,a,hqPSˆAˆJHK
|Q˚

hps, a; rq ´ Q˚
hps, a; prq| .

Since the derivation is carried out for arbitrary pπ˚, it follows that:

HdG
V ˚

pR, pRτ
q ď 2HHdG

Q˚
pR, pRτ

q.
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6| Lower Bounds

In this section, we establish sample complexity lower bounds for the dG-IRL problem
based on the PAC requirement of Definition 41 in the generative model setting. We
start presenting the general result (Section 6.1) and, then, we comment on its form and,
subsequently, provide a sketch of the construction of the hard instances for obtaining the
lower bound (Section 6.2). For the sake of presentation, we assume that the expert’s
policy πE is known; the extension to the case of unknown πE is reported in Appendix A.

6.1. Main Result

In this section, we report the main result of the lower bound of the sample complexity of
learning the feasible reward set.

Theorem 14 (Lower Bound for dG-IRL). Let A “ pµ, τq be an pϵ, δq-PAC algorithm for
dG-IRL. Then, there exists an IRL problem pM, πEq such that, if δ ď 1{32, S ě 9, A ě 2,
and H ě 12, the expected sample complexity is lower bounded by:

• if the transition model p is time-inhomogeneous:

E
pM,πEq,A

rτ s ě
1

1024

H3SA

ϵ2

ˆ

1

2
log

ˆ

1

δ

˙

`
1

5
S

˙

;

• if the transition model p is time-homogeneous:

E
pM,πEq,A

rτ s ě
1

512

H2SA

ϵ2

ˆ

1

2
log

ˆ

1

δ

˙

`
1

5
S

˙

,

where EpM,πEq,A denotes the expectation w.r.t. the probability measure PpM,πEq,A.

Some observations are in order. First, the derived lower bound displays a linear depen-
dence on the number of actions A and dependence on the horizon H raised to a power
2 or 3, which depends on whether the underlying transition model is time-homogeneous,
as common even for forward RL [e.g., 12, 15]. Second, we identify two different regimes
visible inside the parenthesis related to the dependence on the number of states S and
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s˚

s´

s`

a˚

‰ a˚

1{2´ϵ1

1{2

1{2`ϵ1

1{2

1

1

(a) MDP\R used for the small-δ regime.

s˚

sS

...

s1

s2

a0

aj ‰ a0
1{2

1{2

1{2

p1`ϵ1vSq{S

p1`ϵ1v1q{S

p1`ϵ1v2q{S

1

1

1

(b) MDP\R used for the large-δ regime.

Figure 6.1: The MDP\R employed in the constructions of the lower bounds of Section 6.
The expert’s policy is πEpsq “ a0. The arrow with double border denotes a transition
executed for multiple actions.

the confidence δ. Specifically, for small values of δ (i.e., δ « 0), the dominating part
is log

`

1
δ

˘

, leading to a sample complexity of order Ω
´

H3SA
ϵ2

log
`

1
δ

˘

¯

. Instead, for large
δ (i.e., δ « 1{32), the most relevant part is the one corresponding to S, leading to
sample complexity of order Ω

´

H3S2A
ϵ2

¯

(both for the time-inhomogeneous case). An anal-
ogous two-regime behavior has been previously observed in the reward-free exploration
setting [23, 27, 38].

6.2. Proof

Proof. We put together the results of Theorem 15 and Theorem 16, by recalling that
maxta, bu ě a`b

2
, or, equivalently, assuming to observe instances like the ones of Theo-

rem 15 w.p. 1{2 as well as those of Theorem 16.

Theorem 15. Let A “ pµ, τq be an pϵ, δq-PAC algorithm for dG-IRL. Then, there exists
an IRL problem pM, πEq such that, if ϵ ď 1, δ ă 1{16, S ě 9, A ě 2, and H ě 12, the
expected sample complexity is lower bounded by:

• if the transition model p is time-inhomogeneous:

E
pM,πEq,A

rτ s ě
1

2048

H3SA

ϵ2
log

ˆ

1

δ

˙

;
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• if the transition model p is time-homogeneous:

E
pM,πEq,A

rτ s ě
1

1024

H2SA

ϵ2
log

ˆ

1

δ

˙

.

Proof. Step 1: Instances Construction The construction of the hard MDP\R in-
stances follows similar steps as the ones presented in the constructions of lower bounds
for policy learning [15] and the hard instances are reported in Figure 6.2 in a semi-formal
way. The state space is given by S “ tsstart, sroot, s´, s`, s1, . . . , sSu and the action space
is given by A “ ta0, a1, . . . , aAu. The transition model is described below and the horizon
is H ě 3. We introduce the constant H P JHK, whose value will be chosen later. Let us
observe, for now, that if H “ 1, the transition model is time-homogeneous.

The agent begins in state sstart, where every action has the same effect. Specifically, if
the stage h ă H, then there is probability 1{2 to remain in sstart and a probability 1{2

to transition to sroot. Instead, if h ě H, the state transitions to sroot deterministically.
From state sroot, every action has the same effect and the state transitions with equal
probability 1{S to a state si with i P JSK. In all states si, apart from a specific one, i.e.,
state s˚, all actions have the same effect, i.e., transitioning to states s´ and s` with equal
probability 1{2. State s˚ behaves as the other ones if the stage h ‰ h˚, where h˚ P JHK
is a predefined stage. If, instead, h “ h˚, all actions aj ‰ a˚ behave like in the other
states, while for action a˚, we have a 1{2` ϵ1 probability of reaching s` (and consequently
probability 1{2 ´ ϵ1 of reaching s´), with ϵ1 P r0, 1{4s. Notice that, having fixed H, the
possible values of h˚ are t3, . . . , 2 ` Hu. States s` and s´ are absorbing states. The
expert’s policy always plays action a0.

Let us consider the base instance M0 in which there is no state behaving like s˚. Addition-
ally, by varying the triple ℓ :“ ps˚, a˚, h˚q P ts1, . . . , sSu ˆ ta1, . . . , aAu ˆ J3, H ` 2K “: I,
we can construct the class of instances denoted by M “ tMℓ : ℓ P t0u Y Iu.

Step 2: Feasible Set Computation Let us consider an instance Mℓ P M, we now
seek to provide a lower bound to the Hausdorff distance HdG pRM0 ,RMℓ

q. To this end,
we focus on the triple ℓ “ ps˚, a˚, h˚q and we enforce the convenience of action a0 over
action a˚. For the base MDP\R M0, let r0 P RM0 , we have:

r0h˚
ps˚, a0q `

1

2

H
ÿ

l“h˚`1

`

r0l ps´q ` r0l ps`q
˘

ě r0h˚
ps˚, a˚q `

1

2

H
ÿ

l“h`1

`

r0l ps´q ` r0l ps`q
˘

ùñ r0h˚
ps˚, a0q ě r0h˚

ps˚, a˚q,
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sstart

sroot

. . . . . .
s˚

s1 sS

s`s´

h ă H w.p. 1
2

w.p. 1
2

or h ě H

w.p. 1
S

w.p. 1
S

w.p. 1
S

w.p. 1
2

w.p. 1
2

w.p. 1
2

w.p. 1
2

h “ h˚ w.p. 1
2

` ϵ1h “ h˚ w.p. 1
2

´ ϵ1

w.p. 1
2

w.p. 1
2

Figure 6.2: Semi-formal representation of the the hard instances MDP\R used in the
proof of Theorem 15.

For the alternative MDP\R Mℓ, let rℓ P RMℓ
, we have:

rℓh˚
ps˚, a0q `

1

2

H
ÿ

l“h˚`1

`

rℓl ps´q ` rℓl ps`q
˘

ě

ě rℓh˚
ps˚, a˚q `

H
ÿ

l“h˚`1

ˆˆ

1

2
´ ϵ1

˙

rℓl ps´q `

ˆ

1

2
` ϵ1

˙

rℓl ps`q

˙

ùñ rℓh˚
ps˚, a0q ě rℓh˚

ps˚, a˚q ´ ϵ1

H
ÿ

l“h˚`1

`

rℓl ps´q ´ rℓl ps`q
˘

.

In order to lower bound the Hausdorff distance HdG pRM0 ,RMℓ
q, we set for Mℓ:
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rℓl ps´q “ ´rℓl ps`q “ 1, rℓh˚
ps˚, a˚q “ 1, rℓh˚

ps˚, a0q “ 1 ´ 2ϵ1
pH ´ h˚q.

Then, for notational convenience, for the MDP\R M0, we set x :“ r0h˚
ps˚, a0q and y :“

r0h˚
ps˚, a˚q:

HdG pRM0 ,RMℓ
q ě min

x,yPr´1,1s
yěx

max t|x ´ 1| , |y ´ 1 ` 2ϵ1
pH ´ h˚q|u “ ϵ1

pH ´ h˚q.

We enforce the following constraint on this quantity:

@h˚
P J3, H ` 2K : pH ´ h˚

qϵ1
ě 2ϵ ùñ ϵ1

ě max
h˚PJ3,H`2K

2ϵ

pH ´ h˚q
“

2ϵ

pH ´ H ´ 2q
.

(6.1)

Notice that ϵ1 ď 1{4 whenever H ě H ` 10.

Step 3: Lower bounding Probability Let us consider an pϵ, δq-correct algorithm A

that outputs the estimated feasible set pR. Thus, for every ı P I, we can lower bound the
error probability:

δ ě sup
all M MDP\R and expert policies π

P
pM,πq,A

´

HdG

´

RM, pR
¯

ě ϵ
¯

ě sup
MPM

P
pM,πq,A

´

HdG

´

RM, pR
¯

ě ϵ
¯

ě max
ℓPt0,ıu

P
pMℓ,πq,A

´

HdG

´

RMℓ
, pR

¯

ě ϵ
¯

.

For every ı P I, let us define the identification function:

Ψı :“ argmin
ℓPt0,ıu

HdG

´

RMℓ
, pR

¯

.

Let ȷ P t0, ıu. If Ψı “ ȷ, then, HdGpRMΨı
,RMȷq “ 0. Otherwise, if Ψı ‰ ȷ, we have:

HdG

`

RMΨı
,RMȷ

˘

ď HdG

´

RMΨı
, pR

¯

` HdG

´

pR,RMȷ

¯

ď 2HdG

´

pR,RMȷ

¯

,

where the first inequality follows from triangular inequality and the second one from the
definition of identification function Ψı. From Equation (6.1), we have that
HdG

`

RMΨı
,RMȷ

˘

ě 2ϵ. Thus, it follows that HdG

´

pR,RMȷ

¯

ě ϵ. This implies the
following inclusion of events for ȷ P t0, ıu:

!

HdG

´

pR,RMȷ

¯

ě ϵ
)

Ě tΨı ‰ ȷu .
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Thus, we can proceed by lower bounding the probability:

max
ℓPt0,ıu

P
pMℓ,πq,A

´

HdG

´

RMℓ
, pR

¯

ě ϵ
¯

ě max
ℓPt0,ıu

P
pMℓ,πq,A

pΨı ‰ ℓq

ě
1

2

„

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı ‰ ıq

ȷ

“
1

2

„

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı “ 0q

ȷ

,

where the second inequality follows from the observation that maxta, bu ě 1
2
pa ` bq and

the equality from observing that Ψı P t0, ıu. The intuition behind this derivation is
that we lower bound the probability of making a mistake ě ϵ with the probability of
failing in identifying the true underlying problem. We can now apply the Bretagnolle-
Huber inequality [32, Theorem 14.2] (also reported in Theorem 20 for completeness) with
P “ PpM0,πq,A, Q “ PpM0,πqA, and A “ tΨı ‰ 0u:

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı “ 0q ě
1

2
exp

ˆ

´DKL

ˆ

P
pM0,πq,A

, P
pMı,πq,A

˙˙

.

Step 4: KL-divergence Computation Let M P M, we denote with PA,M,π the joint
probability distribution of all events realized by the execution of the algorithm in the
MDP\R (the presence of π is irrelevant as we assume it known):

P
pM,πq,A

“

τ
ź

t“1

ρtpst, at, ht|Ht´1qphtps
1
t|st, atq.

where Ht´1 “ ps1, a1, h1, s
1
1, . . . , st´1, at´1, ht´1, s

1
t´1q is the history. Let ı P I and denote

with p0 and pı the transition models associated with M0 and Mı. Let us now move to
the KL-divergence:

DKL
`

PpM0,πq,A,PpMı,πq,A

˘

“ E
pM0,πq,A

«

τ
ÿ

t“1

DKL
`

p0ht
p¨|st, atq, p

ı
ht

p¨|st, atq
˘

ff

ď E
pM0,πq,A

“

N τ
h˚

ps˚, a˚q
‰

DKL
`

p0h˚
p¨|s˚, a˚q, pıh˚

p¨|s˚, a˚q
˘

ď 8pϵ1
q
2 E

pM0,πq,A

“

N τ
h˚

ps˚, a˚q
‰

.

having observed that the transition models differ in ı “ ps˚, a˚, h˚q and defined N τ
h˚

ps˚, a˚q “
řτ

t“1 1tpst, at, htq “ ps˚, a˚, h˚qu and the last passage is obtained by Lemma 7 with D “ 2
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(and ϵ “ 2ϵ1). Putting all together, we have:

δ ě
1

4
exp

ˆ

´8 E
pM0,πq,A

“

N τ
h˚

ps˚, a˚q
‰

pϵ1
q
2

˙

ùñ

ùñ E
pM0,πq,A

“

N τ
h˚

ps˚, a˚q
‰

ě
log 1

4δ

8pϵ1q2
“

pH ´ H ´ 2q2 log 1
4δ

32ϵ2
.

Thus, summing over ps˚, a˚, h˚q P I, we have:

E
pM0,πq,A

rτ s ě
ÿ

ps˚,a˚,h˚qPI

E
pM0,πq,A

“

N τ
h˚

ps˚, a˚q
‰

“
ÿ

ps˚,a˚,h˚qPI

pH ´ H ´ 2q2 log 1
4δ

32ϵ2

“
SAHpH ´ H ´ 2q2

32ϵ2
log

1

4δ
.

The number of states is given by S “ |S| “ S ` 4, the number of actions is given by
A “ |A| “ A ` 1. Let us first consider the time-homogeneous case, i.e., H “ 1:

E
pM0,πq,A

rτ s ě
pS ´ 4qpA ´ 1qpH ´ 3q2

32ϵ2
log

1

4δ
.

For δ ă 1{16, S ě 9, A ě 2, H ě 10, we obtain:

E
pM0,πq,A

rτ s ě
SAH2

1024ϵ2
log

1

δ
.

For the time-inhomogeneous case, instead, we select H “ H{2, to get:

E
pM0,πq,A

rτ s ě
pS ´ 4qpA ´ 1qpH{2qpH ´ H{2 ´ 2q2

ϵ2
log

1

4δ
.

For δ ă 1{16, S ě 9, A ě 2, H ě 12, we obtain:

E
pM0,πq,A

rτ s ě
SAH3

2048ϵ2
log

1

δ
.

Theorem 16. Let A “ pµ, τq be an pϵ, δq-PAC algorithm for dG-IRL. Then, there exists
an IRL problem pM, πEq such that, if ϵ ď 1, δ ď 1{2, S ě 16, A ě 2, H ě 131, the
expected sample complexity is lower bounded by:
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• if the transition model p is time-inhomogeneous:

E
pM,πEq,A

rτ s ě
1

5120

S2AH3

ϵ2
;

• if the transition model p is time-homogeneous:

E
pM,πEq,A

rτ s ě
1

2560

S2AH2

ϵ2
.

Proof. Step 1: Instances Construction The construction of the hard MDP\R in-
stances for this second bound follows steps similar to those of reward free exploration [23]
and the instances are reported in Figure 6.3 in a semi-formal way. The state space is
given by S “ tsstart, sroot, s1, . . . , sS, s

1
1, . . . , s

1

S
u and the action space is given by A “

ta0, a1, . . . , aAu. We assume S to be divisible by 16. The transition model is described
below and the horizon is H ě 3.

The agent begins in state sstart, where every action has the same effect. Specifically, if the
stage h ă H (H P JHK, whose value will be chosen later), then there is probability 1{2 to
remain in sstart and a probability 1{2 to transition to sroot. Instead, if h ě H, the state
transitions to sroot deterministically. From state sroot, every action has the same effect and
the state transitions with equal probability 1{S to a state si with i P JSK. In every state
si and every stage h, action a0 allows reaching states s1

1, . . . , s
1

S
with equal probability

1{S. Instead, by playing the other actions aj with j ě 1 at stage h, the probability
distribution of the next state is given by phps1

k|si, ajq “ p1 ` ϵ1v
psi,aj ,hq

k q{S where the
vector vpsi,aj ,hq “ pv

psi,aj ,hq

1 , . . . , v
psi,aj ,hq

S
q P V , where V :“ tt´1, 1uS :

řS
j“1 vj “ 0u and

ϵ1 P r0, 1{2s. Notice that, having fixed H, the possible values of h are t3, . . . , 2 ` Hu.
States s1

1, . . . , s
1

S
are absorbing states. The expert’s policy always plays action a0.

Let us introduce the set I :“ ts1, . . . , sSu ˆ ta1, . . . , aAu ˆ J3, H ` 2K. Let v “ pvıqıPI P

VI which is the set of vectors having as components the elements vı determining the
probability distribution of the next state starting from the triple ı P I. We denote with
Mv the MDP\R induced by v. We can construct the class of instances denoted by
M “ tMv : v P VIu. Moreover, we denoted with Mv

ı
Ðw the instance in which we replace

the ı component of v, i.e., vı, with w P V and Mv
ı

Ð0 the instance in which we replace the
ı component of v, i.e., vı, with the zero vector.

Step 2: Feasible Set Computation Thanks to Lemma 9, we know that there exists
a subset V Ă V of cardinality at least |V | ě 2S{5 such that for every v, w P V with v ‰ w

we have
řS

j“1 |vj ´ wj| ě S{16. Thus, we consider the set VI
Ă VI and to build the

instances v P VI and v, w P V with v ‰ w. Let ı P I, the induced instances are denoted
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sstart

sroot

. . . . . .s1 sS

s1
1 s1

2 s1

S

. . .

h ă H w.p. 1
2

w.p. 1
2

or h ě H

w.p. 1
S

w.p. 1
S

aj w.p. 1`ϵ1v
ps

S
,aj ,hq

1

S

aj w.p. 1`ϵ1v
ps

S
,aj ,hq

2

S

aj w.p. 1`ϵ1v
ps1,aj ,hq

1

S

aj w.p. 1`ϵ1v
ps1,aj ,hq

2

S

aj w.p.
1`ϵ1v

ps1,aj ,hq

S

S

Figure 6.3: Semi-formal representation of the the hard instances MDP\R used in the
proof of Theorem 16.

by Mv
ı

Ðv,Mv
ı

Ðw P M.

To lower bound the Hausdorff distance, we focus on the triple ı “ ps˚, a˚, h˚q and we
enforce the convenience of action a0 over action a˚. For both MDP\R Mv

ı
Ðv and Mv

ı
Ðw,

let rv P RM
v

ı
Ðv

and rw P RM
v

ı
Ðw

, we have:

rvh˚
ps˚, a0q `

1

S

H
ÿ

l“h˚`1

S
ÿ

j“1

rvl ps1
jq ě rvh˚

ps˚, a˚q `

H
ÿ

l“h˚`1

S
ÿ

j“1

1 ` ϵ1vj

S
rvl ps1

jq

ùñ rvh˚
ps˚, a0q ě rvh˚

ps˚, a˚q `
ϵ1

S

S
ÿ

j“1

vj

H
ÿ

l“h˚`1

rvl ps1
jq.
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rwh˚
ps˚, a0q `

1

S

H
ÿ

l“h˚`1

S
ÿ

j“1

rwl ps1
jq ě rwh˚

ps˚, a˚q `

H
ÿ

l“h˚`1

S
ÿ

j“1

1 ` ϵ1w1
j

S
rwl ps1

jq

ùñ rwh˚
ps˚, a0q ě rwh˚

ps˚, a˚q `
ϵ1

S

S
ÿ

j“1

wj

H
ÿ

l“h˚`1

rwl ps1
jq. (6.2)

In order to lower bound the Hausdorff distance HdG

`

Mv
ı

Ðv,Mv
ı

Ðw

˘

, we set for Mv
ı

Ðv:

rvl ps1
jq “ ´vj, r

v
h˚

ps˚, a˚q “ 1, rvh˚
ps˚, a0q “ 1 ´ ϵ1

pH ´ h˚q.

We now want to find the closest reward function rw for the instance Mv
ı

Ðw, recalling that
there are at least S{16 components of the vectors v and w that are different. Clearly, we
can set rwl ps1

jq “ rvl ps1
jq “ ´vj for all j P JSK in which vj “ wj since this will not increase

the Hausdorff distance and make the constraint in Equation (6.2) less restrictive. For
symmetry reasons, we can limit our reasoning to the case in which vj “ ´1 and wj “ 1

for the j terms in which they are different. This way, the constraint becomes:

rwh˚
ps˚, a0q

loooomoooon

“:x

ě rwh˚
ps˚, a˚q

loooomoooon

“:y

´
Nv,w

S
ϵ1

pH ´ h˚
q

`

ˆ

1 ´
Nv,w

S

˙

ϵ1
pH ´ h˚

q
1

pH ´ h˚q

´

1 ´
Nv,w

S

¯

S
ÿ

j:vj‰wj

H
ÿ

l“h˚`1

rwl ps1
jq

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“:z

,

where Nv,w “
řS

j“1 1tvj “ wju. Notice that z P r´1, 1s. Let α “
Nv,w

S
, the Hausdorff

distance can be lower bounded by:

HdG

`

Mv
ı

Ðv,Mv
ı

Ðw

˘

“ min
x,y,zPr´1,1s

yěx´αϵ1pH´h˚q`p1´αqϵ1pH´h˚qz

max t|x ´ 1|, |y ´ p1 ´ ϵ1
pH ´ h˚

qq|, |z ` 1|u

ě min
x,yPr´1,1s

yěx´αϵ1pH´h˚q

max t|x ´ 1|, |y ´ p1 ´ ϵ1
pH ´ h˚

qq|u

“
1

2
p1 ´ αqϵ1

pH ´ h˚
q ě

ϵ1

32
pH ´ h˚

q,

where the first inequality derives from the fact that to have a Hausdorff distance smaller
than 1, we must take z ă 0 at least and the second inequality is obtained by recalling
that 1 ´ α ě 1

16
for the packing argument.
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We enforce the following constraint on this quantity:

@h˚
P J3, H ` 2K :

ϵ1

32
pH ´ h˚

q ě 2ϵ ùñ ϵ1
ě max

h˚PJ3,H`2K

ϵ

64pH ´ h˚q
“

64ϵ

pH ´ H ´ 2q
.

(6.3)

Notice that ϵ1 ď 1{2 whenever H ě H ` 130.

Step 3: Lower bounding Probability Let us consider an pϵ, δq-correct algorithm A

that outputs the estimated feasible set pR. Thus, consider ı P I and v P VI , we can lower
bound the error probability:

δ ě sup
all M MDP\R and expert policies π

P
pM,πq,A

´

HdG

´

RM, pR
¯

ě ϵ
¯

ě sup
MPM

P
pM,πq,A

´

HdG

´

RM, pR
¯

ě ϵ
¯

ě max
wPV

P
pM

v
ı

Ðw
,πq,A

´

HdG

´

RM
v

ı
Ðw

, pR
¯

ě ϵ
¯

.

For every ı P I and v P VI , let us define the identification function:

Ψı,v :“ argmin
wPV

HdG

´

RM
v

ı
Ðw

, pR
¯

.

Let w P V . If Ψı,v “ w, then, HdGpRM
v

ı
ÐΨı,v

,RM
v

ı
Ðw

q “ 0. Otherwise, if Ψı,v ‰ w, we
have:

HdGpRM
v

ı
ÐΨı,v

,RM
v

ı
Ðw

q ď HdGpRM
v

ı
ÐΨı,v

, pRq ` HdGp pR,RM
v

ı
Ðw

q ď 2HdGp pR,RM
v

ı
Ðw

q,

where the first inequality follows from triangular inequality and the second one from the
definition of identification function Ψı,v. From Equation (6.3), we have that
HdG

`

RMΨı
ı
,RMv

ı

˘

ě 2ϵ. Thus, it follows that HdGp pR,RM
v

ı
Ðw

q ě ϵ. This implies the
following inclusion of events for w P V :

!

HdGp pR,RM
v

ı
Ðw

q ě ϵ
)

Ě tΨı,v ‰ wu .

Thus, we can proceed by lower bounding the probability:

max
wPV

P
pM

v
ı

Ðw
,πq,A

´

HdG

´

RM
v

ı
Ðw

, pR
¯

ě ϵ
¯

ě max
wPV

P
pM

v
ı

Ðw
,πq,A

pΨı,v ‰ wq

ě
1

|V |

ÿ

wPV

P
pM

v
ı

Ðw
,πq,A

pΨı,v ‰ wq ,
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where the second inequality follows from bounding the maximum of probability with the
average. We can now apply the Fano’s inequality (Theorem 21) with reference probability
P0 “ PpM

v
ı

Ð0
,πq,A, Pw “ PpM

v
ı

Ðw
,πq,A, and Aw “ tΨı,v ‰ wu:

1

|V |

ÿ

wPV

P
pM

v
ı

Ðw
,πq,A

pΨı,v ‰ wq ě 1 ´
1

log |V |

˜

1

|V |

ÿ

wPV

DKL

˜

P
pM

v
ı

Ðw
,πq,A

, P
pM

v
ı

Ð0
,πq,A

¸

´ log 2

¸

.

(6.4)

Step 4: KL-divergence Computation Let M be an instance, we denote with PA,M,π

the joint probability distribution of all events realized by the execution of the algorithm
in the MDP\R (the presence of π is irrelevant as we assume it known):

P
pM,πq,A

“

τ
ź

t“1

ρtpst, at, ht|Ht´1qphtps
1
t|st, atq.

where Ht´1 “ ps1, a1, h1, s
1
1, . . . , st´1, at´1, ht´1, s

1
t´1q is the history up to time t ´ 1. Let

ı P I and v P V and denote with pv
ı

Ð0 and pv
ı

Ðw the transition models associated with
Mv

ı
Ð0 and Mv

ı
Ðw. Let us now move to the KL-divergence and denoting ı “ ps˚, a˚, h˚q:

Thus, we have:

DKL

˜

P
pM

v
ı

Ðw
,πq,A

, P
pM

v
ı

Ð0
,πq,A

¸

“ E
pM

v
ı

Ðw
,πq,A

«

τ
ÿ

t“1

DKL

´

pv
ı

Ðw
ht

p¨|st, atq, p
v

ı
Ð0

ht
p¨|st, atq

¯

ff

ď E
pM

v
ı

Ðw
,πq,A

“

N τ
h˚

ps˚, a˚q
‰

DKL

´

pv
ı

Ðw
h˚

p¨|s˚, a˚q, pv
ı

Ð0
h˚

p¨|s˚, a˚q

¯

ď 2pϵ1
q
2 E

pM
v

ı
Ðw

,πq,A

“

N τ
h˚

ps˚, a˚q
‰

,

having observed that the transition models differ in ı “ ps˚, a˚, h˚q and defined N τ
h˚

ps˚, a˚q “
řτ

t“1 1tpst, at, htq “ ps˚, a˚, h˚qu and the last passage is obtained by Lemma 7 with D “ S.
Plugging into Equation (6.4), we obtain:

δ ě
1

|V |

ÿ

wPV

P
pM

v
ı

Ðw
,πq,A

pΨı,v ‰ wq ùñ

ùñ
1

|V |

ÿ

wPV

E
pM

v
ı

Ðw
,πq,A

“

N τ
h˚

ps˚, a˚q
‰

ě
p1 ´ δq log |V | ´ log 2

2pϵ1q2
.

Since the derivation is carried out for every ı P I and v P VI , we can perform the
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summation over ı and the average over v:

ÿ

ıPI

1

|V ||I|

ÿ

vPVI

1

|V |

ÿ

wPV

E
pM

v
ı

Ðw
,πq,A

“

N τ
h˚

ps˚, a˚q
‰

“
1

|V ||I|

ÿ

vPVI

ÿ

ıPI
E

pMv ,πq,A

“

N τ
h˚

ps˚, a˚q
‰

ě SAH
p1 ´ δq log |V | ´ log 2

2pϵ1q2
.

Notice that we get a guarantee on a mean under the uniform distribution of the instances
of the sample complexity. Thus, there must exist one vhard P V such that:

E
pM

vhard,π
q,A

rτ s ě
ÿ

ıPI
E

pM
vhard,π

q,A

“

N τ
h˚

ps˚, a˚q
‰

ě SAH
p1 ´ δq log |V | ´ log 2

2pϵ1q2
.

Then, we select δ ď 1{2, recall that |V | ě 2S{5, we get:

E
pM

vhard,π
q,A

rτ s ě SAH
S{10 ´ log 2

2pϵ1q2
“ SAH

pH ´ H ´ 2q2pS{10 ´ log 2q

8912ϵ2

The number of states is given by S “ |S| “ 2S ` 2, the number of actions is given by
A “ |A| “ A`1. Let us first consider the time-homogeneous case, i.e., H “ 1, for S ě 16,
A ě 2, H ě 130, we have:

E
pM

vhard,π
q,A

rτ s ě
S2AH2

2560ϵ2
.

For the time inhomogeneous case, we select H “ H{2, to get, under the same conditions:

E
pM

vhard,π
q,A

rτ s ě
S2AH3

5120ϵ2
.
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In this chapter, we analyze the sample complexity of a uniform sampling strategy (Uniform
Sampling-IRL, US-IRL) for the dG-IRL problem (Algorithm 10). We start presenting the
sample complexity analysis (Section 7.1) and, then, we provide a sketch of the proof
(Section 7.2).

7.1. Main Result

The US-IRL algorithm was presented in [36, 39] but analyzed for different IRL formula-
tions. We revise it since it matches our sample complexity lower bounds, provided that
more sophisticated concentration tools w.r.t. those employed in [36, 39]. For the sake
of presentation, we assume that the expert’s policy πE is known; the extension to un-
known πE is reported in Appendix A. Let D“tpsl,al,hl,s

1
l,a

E
l qulPJtK be a dataset of tPN

tuples, where for every lPJtK, we have s1
l„phl

p¨|sl,alq and aEl „πE
hl

p¨|slq. We introduce
the counts for every ps,a,hqPSˆAˆJHK: nt

hps,a,s1q:“
řt

l“11tpsl,al,hl,s
1
lq“ps,a,h,s1qu,

nt
hps,aq:“

ř

s1PSn
t
hps,a,s1q, nt

hpsq:“
ř

aPAn
t
hps,aq, and nt,E

h ps,aq:“
řt

l“11tpsl,a
E
l q“ps,aqu.

These quantities allow defining the empirical transition model ppt“pppthqhPJHK and empirical
expert’s policy pπt,E“pπt,E

h qhPJHK as follows:

ppthps1
|s, aq :“

$

&

%

nt
hps,a,s1q

nt
hps,aq

if nt
hps, aq ą 0

1
S

otherwise
,

pπE,t
h pa|sq :“

$

&

%

nE,t
h ps,aq

nt
hpsq

if nt
hpsq ą 0

1
A

otherwise
.

(7.1)

In the time-homogeneous case, we simply merge the samples collected at different stages
h P JHK. We denote with p xMt, pπE,tq the empirical IRL problem, where xMt “ pS,A, ppt, Hq

the empirical MDP\R induced by ppt. Finally, we denote with pRt :“ R
p xMt,pπE,tq

the feasi-
ble reward set induced p xMt, pπE,tq. We will omit the superscript t, whenever clear from
the context and write pR. Because of the assumption that expert’s policy πE is known,
the algorithm as presented in this chapter uses only the first set of equations. At each
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iteration, the algorithm collects a sample from every ps, a, hq P S ˆ A ˆ JHK and, for
time-inhomogeneous models, computes the confidence function:

Ct
hps, aq :“ 2

?
2pH ´ h ` 1q

d

2β
`

nt
hps, aq, δ

˘

nt
hps, aq

, (7.2)

where β
`

n, δ
˘

:“ logpSAH{δq ` pS ´1q log
`

ep1`n{pS ´1q
˘

.1 The algorithm stops as soon
as all confidence functions fall below the threshold ϵ. The following theorem provides the
sample complexity of US-IRL.

Theorem 17 (Sample Complexity of US-IRL). Let ϵ ą 0 and δ P p0, 1q, US-IRL is
pϵ, δq-PAC for dG-IRL and with probability at least 1 ´ δ it stops after τ samples with:

• if the transition model p is time-inhomogeneous:

τ ď
8H3SA

ϵ2

ˆ

log

ˆ

SAH

δ

˙

` pS ´ 1qC

˙

,

where C “ logpe{pS ´ 1q ` p8eH2q{ppS ´ 1qϵ2qplogpSAH{δq ` 4eqq;
• if the transition model p is time-homogeneous and :

τ ď
8H2SA

ϵ2

ˆ

log

ˆ

SA

δ

˙

` pS ´ 1qC2

˙

,

where rC “ logpe{pS ´ 1q ` p8eH2q{ppS ´ 1qϵ2qplogpSA{δq ` 4eqq.

Thus, time-inhomogeneous (resp. time-homogeneous) transition models, US-IRL suffers a
sample complexity bound of order rO

´

H3SA
ϵ2

`

log
`

1
δ

˘

` S
˘

¯

(resp. rO
´

H2SA
ϵ2

`

log
`

1
δ

˘

` S
˘

¯

)
matching the lower bounds of Theorem 14 up to logarithmic factors for both regimes of
δ.

1In the time-homogeneous case, the algorithm merges the samples collected at different h P JHK for
the estimation of the transition model and replaces the confidence function with:

rCt
hps, aq :“ 2

?
2pH ´ h ` 1q

d

2rβ
`

ntps, aq, δ
˘

ntps, aq
, (7.3)

where rβ
`

n, δ
˘

:“ logpSA{δq ` pS ´ 1q log
`

ep1 ` n{pS ´ 1q
˘

and ntps, aq “
řH

h“1 n
t
hps, aq.
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Input: significance δ P p0, 1q, ϵ target accuracy
t Ð 0, ϵ0 Ð `8

while ϵt ą ϵ do
t Ð t ` SAH
Collect one sample from each ps, a, hq P S ˆ A ˆ JHK
Update ppt according with (7.1)
Update ϵt “ maxps,a,hqPSˆAˆJHK Ct

hps, aq (resp. rCt
hps, aq)

end while

Algorithm 10: UniformSampling-IRL (US-IRL) for time-inhomogeneous (resp. time-
homogeneous) transition models.

7.2. Proof

Proof. We start with the case in which the transition model is time-inhomogeneous. In
this case, we introduce the following good event:

E :“

#

@t P N, @ps, a, hq P S ˆ A ˆ JHK : DKL

´

ppthp¨|s, aq, php¨|s, aq

¯

ď
β
`

nt
hps, aq, δ

˘

nt
hps, aq

+

,

where ph is the true transition model and ppth is its estimate via Equation (7.1) at time t.
Thanks to Lemma 4, we have that PpM,πEq,ApEq ě 1 ´ δ. Thus, under the good event E ,
we apply Theorem 12:

HdGpR, pRτ
q ď

2ρGppM, πEq, p xMt, pπE,tqq

1 ` ρGppM, πEq, p xMt, pπE,tqq

ď 2ρG
ppM, πE

q, p xM, pπE
qq

ď 2 max
ps,a,hqPSˆAˆJHK

pH ´ h ` 1q

ˆ

ˇ

ˇ

ˇ
1tπE

h pa|sq“0u ´ 1tpπE
h pa|sq“0u

ˇ

ˇ

ˇ
`

` }php¨|s, aq ´ pphp¨|s, aq}1

˙

ď 2 max
ps,a,hqPSˆAˆJHK

pH ´ h ` 1q }php¨|s, aq ´ pphp¨|s, aq}1

ď 2
?
2 max

ps,a,hqPSˆAˆJHK
pH ´ h ` 1q

c

DKL

´

ppthp¨|s, aq, php¨|s, aq

¯

“ max
ps,a,hqPSˆAˆJHK

Ct
hps, aq,

where we exploited the fact that the expert’s policy is known in the last but one passage
and used Pinsker’s inequality in the last passage. When the US-IRL stops we have that
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maxps,a,hqPSˆAˆJHK Ct
hps, aq ď ϵ and, consequently, for all ps, a, hq P S ˆ A ˆ JHK we have:

max
ps,a,hqPSˆAˆJHK

Ct
hps, aq “ max

ps,a,hqPSˆAˆJHK
2
?
2pH ´ h ` 1q

d

β
`

nt
hps, aq, δ

˘

nt
hps, aq

ď ϵ.

Thus, the algorithm stops at the smallest t such that:

ùñ nt
hps, aq ě

8pH ´ h ` 1q2β
`

nt
hps, aq, δ

˘

ϵ2
“

“
8pH ´ h ` 1q2

ϵ2
`

logpSAH{δq ` pS ´ 1q logpep1 ` nt
hps, aq{pS ´ 1qq

˘

.

Thus, by applying Lemma 15 of [27], we obtain:

nτ
hps, aq ď

8pH ´ h ` 1q2

ϵ2

ˆ

log

ˆ

SAH

δ

˙

`

` pS ´ 1q log

ˆ

8epH ´ h ` 1q2

pS ´ 1qϵ2

ˆ

log

ˆ

SAH

δ

˙

` 4e

˙˙˙

.

By recalling that τ “ SAHnτ
hps, aq, and bounding H ´ h ` 1 ď H, we obtain:

τ ď
8H3SA

ϵ2

ˆ

log

ˆ

SAH

δ

˙

` pS ´ 1q log

ˆ

e

S ´ 1
`

8eH2

pS ´ 1qϵ2

ˆ

log

ˆ

SAH

δ

˙

` 4e

˙˙˙

.

If the transition model is time-homogeneous, we suppress the subscript h and the algo-
rithm US-IRL, will merge together all the samples collected at different stages h. Let
us define ntps, aq “

řH
h“1 n

t
hps, aq and ntps, a, s1q “

řH
h“1 n

t
hps, a, s1q. Now the transition

model will be estimated straightforwardly as follows:

pptps1
|s, aq :“

$

&

%

ntps,a,s1q

ntps,aq
if ntps, aq ą 0

1
S

otherwise
.

Let us consider now the following good event:

rE :“

#

@t P N, @ps, aq P S ˆ A : DKL

´

pptp¨|s, aq, pp¨|s, aq

¯

ď
rβ
`

ntps, aq, δ
˘

ntps, aq

+

.

Thanks to Lemma 4, we have that PpM,πEq,AprEq ě 1 ´ δ. Thus, in such a case, thanks to
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Theorem 12, we have:

HdGpR, pRτ
q ď 2

?
2 max

ps,a,hqPSˆAˆJHK
pH ´ h ` 1q

c

DKL

´

ppthp¨|s, aq, php¨|s, aq

¯

“ max
ps,a,hqPSˆAˆJHK

rCt
hps, aq.

The algorithm, therefore, stops as soon as:

max
ps,a,hqPSˆAˆJHK

rCt
hps, aq “ max

ps,a,hqPSˆAˆJHK
2
?
2pH ´ h ` 1q

d

rβ
`

ntps, aq, δ
˘

ntps, aq

“ max
ps,aqPSˆA

2
?
2H

d

rβ
`

ntps, aq, δ
˘

ntps, aq
ď ϵ.

This allows us to compute the maximum value of nτ ps, aq:

nτ
ps, aq ď

8H2

ϵ2

ˆ

log

ˆ

SA

δ

˙

` pS ´ 1q log

ˆ

e

S ´ 1
`

8eH2

pS ´ 1qϵ2

ˆ

log

ˆ

SA

δ

˙

` 4e

˙˙˙

.

Recalling that τ “ SAnτ ps, aq, we obtain:

τ ď
8H2SA

ϵ2

ˆ

log

ˆ

SA

δ

˙

` pS ´ 1q log

ˆ

8eH2

pS ´ 1qϵ2

ˆ

log

ˆ

SA

δ

˙

` 4e

˙˙˙

.

Lemma 4. The following statements hold:

• for β
`

n, δ
˘

“ logpSAH{δq ` pS ´ 1q log
`

ep1`n{pS ´ 1q
˘

, we have that PpEq ě 1´ δ;

• for rβ
`

n, δ
˘

“ logpSA{δq ` pS ´ 1q log
`

ep1 ` n{pS ´ 1q
˘

, we have that PprEq ě 1 ´ δ.

Proof. Let us start with the first statement. Similarly to Lemma 10 of [27], we apply
first a union bound and then technical Proposition 1 of [25] (also reported as Lemma 6
for completeness) to concentrate the KL-divergence:

PpEc
q “P

˜

Dt P N, Dps, a, hq P S ˆ A ˆ JHK : DKL

´

ppthp¨|s, aq, php¨|s, aq

¯

ě
β
`

nt
hps, aq, δ

˘

nt
hps, aq

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

P

˜

Dt P N : DKL

´

ppthp¨|s, aq, php¨|s, aq

¯

ě
β
`

nt
hps, aq, δ

˘

nt
hps, aq

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

δ

SAH
“ δ.
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The proof of the second statement is analogous having simply observed that the union
bound has to be performed over S ˆ A only.
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In this chapter, we sum up the main contributions of this thesis and then we devise
possible directions for future works in this research topic.

8.1. Contributions of the Present Work

In this work, we provided contributions to the understanding of the complexity of the IRL
problem. We conceived a lower bound of order Ω

´

H3SA
ϵ2

`

log
`

1
δ

˘

` S
˘

¯

on the number
of samples collected with a generative model in the finite-horizon setting. This result is
of relevant interest since it sets, for the first time, the complexity of the IRL problem,
defined as the problem of estimating the feasible reward set. Furthermore, we showed
that a uniform sampling strategy matches the lower bound up to logarithmic factors.
Nevertheless, the IRL problem is far from being closed. In the following, we outline a
road map of open questions, hoping to inspire researchers to work in this appealing area.

8.2. Open Questions

Forward Model The most straightforward extension of our findings is moving to the
forward model setting, in which the agent can interact with the environment through
trajectories only. As we already noted, our lower bounds can be comfortably extended to
this setting. However, in this case, the PAC requirement has to be relaxed since controlling
the L8-norm between rewards is no longer a viable option (e.g., for the possible presence
of almost unreachable states). Which distance notion should be used for this setting?
Will the Lipschitz regularity of Section 4 still hold?

Problem-Dependent Analysis Our analysis is worst-case in the class of IRL prob-
lems. Would it be possible to obtain a problem-dependent complexity results? Previous
problem-dependent analyses provided results tightly connected to the properties of the
specific reward selection procedure [36, 39]. Clearly, a currently open question, in all set-
tings in which reward is missing, including reward-free exploration [23] and IRL, is how
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to define a problem-dependent quantity in replacement of the suboptimality gaps.

Reward Selection Our PAC guarantees concern with the complete feasible reward
set. However, algorithmic solutions to IRL implement a specific criterion for selecting a
reward (e.g., maximum entropy, maximum margin). How the PAC guarantee based on
the Hausdorff distance relates to guarantees on a single reward selected with a specific
criterion within R?
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In this appendix, we extend the lower bounds and the algorithm for the case in which
the expert’s policy is unknown. Clearly, if the expert’s policy is deterministic, under
the generative model setting, its estimation is trivial as it suffices to query every state
and stage (resp. state) exactly once for time-inhomogeneous (resp. time-homogeneous)
policies, leading to EpM,πEq,A rτ s “ HS (resp. EpM,πEq,A rτ s “ S). Thus, we consider a
more general setting in which the expert’s policy can be stochastic (still being optimal).
Specifically, we consider the following assumption.

Assumption 1. There exists a known constant πmin P p0, 1s such that every action played
by the expert’s policy πE is played with at least probability πmin:

@ps, a, hq P S ˆ A ˆ JHK : πE
h pa|sq P t0u Y rπmin, 1s.

Intuitively, Assumption 1 formalizes a form of identifiability for the policy. As already
mentioned in Section 4, what matters for learning the feasible reward set is whether
an action is played by the agent (not the corresponding probability). Assumption 1
enforces that every optimal action must be played with a minimum (known) non-null
probability πmin. We shall show that if this assumption is violated, the problem becomes
non-learnable.

A.1. Lower Bound

The following result provides a lower bound for learning the feasible reward set according
to the PAC requirement of Definition (41) when the expert’s policy is unknown, but the
transition model is known. Clearly, one can combine this result with the ones of Section 6
to address the setting in which both the expert’s policy and the transition model are
unknown.

Theorem 18. Let A “ pµ, τq be an pϵ, δq-PAC algorithm for dG-IRL. Then, there exists
an IRL problem pM, πEq where πE fulfills Assumption 1 such that, if ϵ ď 1{2, δ ă 1{16,
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S ě 7, A ě 2, and H ě 3, the number of samples N is lower bounded in expectation by:

• if the expert’s policy πE is time-inhomogeneous:

E
pM,πEq,A

rτ s ě
SH

8 log 1
1´πmin

log

ˆ

1

δ

˙

;

• if the expert’s policy πE is time-homogeneous:

E
pM,πEq,A

rτ s ě
S

4 log 1
1´πmin

log

ˆ

1

δ

˙

.

Before presenting the proof, let us comment the result. We observe that when Assump-
tion 1 is violated, i.e., πmin Ñ 0, the sample complexity lower bound degenerates to
infinity, proving that the problem become non-learnable.

Proof. Step 1: Instances Construction The hard MDP\R instances are depicted in
Figure A.1 in a semi-formal way. The state space is given by S “ tsstart, sroot, s1, . . . , sS, ssinku

and the action space is given by A “ ta0, a1, . . . , aAu. The transition model is described
below and the horizon is H ě 3. We introduce the constant H P JHK, whose value
will be chosen later. Let us observe, for now, that if H “ 1, the transition model is
time-homogeneous.

The agent begins in state sstart, where every action has the same effect. Specifically, if
the stage h ă H, then there is probability 1{2 to remain in sstart and a probability 1{2

to transition to sroot. Instead, if h ě H, the state transitions to sroot deterministically.
From state sroot, every action has the same effect and the state transitions with equal
probability 1{S to a state si with i P JSK. In all states si, apart from a specific one, i.e.,
state s˚, the expert’s policy plays action a0 deterministically, i.e., πE

h pa0|siq “ 1 and the
state transitions deterministically to ssink. In state s˚ the expert’s policy plays a0 as the
other ones if the stage h ‰ h˚, where h˚ P JHK is a predefined stage. If, instead, h “ h˚,
the expert’s action plays a0 w.p. 1 ´ πmin and a specific action a˚ w.p. πmin P r0, 1{2s.
Then, the transition is deterministic to state ssink. Notice that, having fixed H, the
possible values of h˚ are t3, . . . , 2 ` Hu. State ssink is an absorbing state.

Let us consider the base instance π0 in which the expert’s policy always plays action a0

deterministically.1 Additionally, by varying the pair ℓ :“ ps˚, h˚q P ts1, . . . , sSu ˆ J3, H `

2K “: J , we can construct the class of instances denoted by M “ tπℓ : ℓ P t0u Y J u.

1In this construction, the MDP\R does not change across the instances, but what changes is the
expert’s policy. Thus, we parametrize the instances through the policy rather than the MDP\R.
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sstart

sroot

. . . . . .
s˚

s1 sS

ssink

h ă H w.p. 1
2

w.p. 1
S

or h ě H

w.p. 1
S

w.p. 1
S

regardless the action w.p. 1
S

play a0 w.p. 1play a0 w.p. 1

h “ h˚ play a˚ w.p. πminh “ h˚ play w.p. 1 ´ πmin

Figure A.1: Semi-formal representation of the the hard instances MDP\R used in the
proof of Theorem 18.

Step 2: Feasible Set Computation Let us consider an instance πℓ P M, we now seek
to provide a lower bound to the Hausdorff distance HdG pRπ0 ,Rπℓ

q. To this end, we focus
on the pair ℓ “ ps˚, h˚q and we enforce the convenience of both actions a0 and a˚ over
the other actions. Since both actions are played with non-zero probability by the expert’s
policy, their value function must be the same. Let us denote with rℓ P Rπℓ

, we must have
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for all aj R ta0, a˚u:

rℓh˚
ps˚, a0q `

H
ÿ

l“h˚`1

rℓl pssinkq ě rℓh˚
ps˚, ajq `

H
ÿ

l“h˚`1

rℓl pssinkq

ùñ rℓh˚
ps˚, a0q ě rℓh˚

ps˚, ajq,

rℓh˚
ps˚, a0q `

H
ÿ

l“h˚`1

rℓl pssinkq “ rℓh˚
ps˚, a˚q `

H
ÿ

l“h˚`1

rℓl pssinkq

ùñ rℓh˚
ps˚, a0q “ rℓh˚

ps˚, a˚q.

Consider now the base instance π0 and denote with r0 P Rπ0 . Here we have to enforce
the convenience of action a0 over all the others, including a˚:

r0h˚
ps˚, a0q `

H
ÿ

l“h˚`1

rℓl pssinkq ě r0h˚
ps˚, ajq `

H
ÿ

l“h˚`1

rℓl pssinkq

ùñ r0h˚
ps˚, a0q ě r0h˚

ps˚, ajq,

r0h˚
ps˚, a0q `

H
ÿ

l“h˚`1

r0l pssinkq ě r0h˚
ps˚, a˚q `

H
ÿ

l“h˚`1

r0l pssinkq

ùñ r0h˚
ps˚, a0q ě r0h˚

ps˚, a˚q.

In order to lower bound the Hausdorff distance, we perform a valid assignment of the
rewards for the base instance:

r0h˚
ps˚, a0q “ 1, r0h˚

ps˚, a˚q “ ´1, r0h˚
ps˚, ajq “ ´1.

Thus, the Hausdorff distance can be bounded as follows, having renamed, for convenience
x “ rℓh˚

ps˚, a0q and y “ rℓh˚
ps˚, a˚q:

HdGpRπ0 ,Rπℓ
q ě min

x,yPr´1,1s
x“y

maxt|x ´ 1|, |y ` 1|u “ 1.

Step 3: Lower bounding Probability Let us consider an pϵ, δq-correct algorithm A

that outputs the estimated feasible set pR. Thus, for every ı P J , we can lower bound the
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error probability:

δ ě sup
all M MDP\R and expert policies π

P
pM,πq,A

ˆ

HdG

´

Rπ, pR
¯

ě
1

2

˙

ě sup
πPM

P
pM,πq,A

ˆ

HdG

´

Rπ, pR
¯

ě
1

2

˙

ě max
ℓPt0,ıu

P
pM,πℓq,A

ˆ

HdG

´

Rπℓ
, pR

¯

ě
1

2

˙

.

For every ı P J , let us define the identification function:

Ψı :“ argmin
ℓPt0,ıu

HdG

´

Rπℓ
, pR

¯

.

Let ȷ P t0, ıu. If Ψı “ ȷ, then, HdGpRπΨı
,Rπȷq “ 0. Otherwise, if Ψı ‰ ȷ, we have:

HdG

`

RπΨı
,Rπȷ

˘

ď HdG

´

RπΨı
, pR

¯

` HdG

´

pR,Rπȷ

¯

ď 2HdG

´

pR,Rπȷ

¯

,

where the first inequality follows from triangular inequality and the second one from the
definition of identification function Ψı. From Equation (6.3), we have that
HdG

`

RπΨı
,Rπȷ

˘

ě 1. Thus, it follows that HdG

´

pR,Rπȷ

¯

ě 1
2
. This implies the following

inclusion of events for ȷ P t0, ıu:

"

HdG

´

pR,Rπȷ

¯

ě
1

2

*

Ě tΨı ‰ ȷu .

Thus, we can proceed by lower bounding the probability:

max
ℓPt0,ıu

P
pMℓ,πq,A

ˆ

HdG

´

Rπℓ
, pR

¯

ě
1

2

˙

ě max
ℓPt0,ıu

P
pMℓ,πq,A

pΨı ‰ ℓq

ě
1

2

„

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı ‰ ıq

ȷ

“
1

2

„

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı “ 0q

ȷ

,

where the second inequality follows from the observation that maxta, bu ě 1
2
pa ` bq and

the equality from observing that Ψı P t0, ıu. We can now apply the Bretagnolle-Huber
inequality [32, Theorem 14.2] (also reported in Theorem 20 for completeness) with P “

PpM0,πq,A, Q “ PpM0,πq,A, and A “ tΨı ‰ 0u:

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı “ 0q ě
1

2
exp

ˆ

´DKL

ˆ

P
pM0,πq,A

, P
pMı,πq,A

˙˙

.
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Step 4: KL-divergence Computation Let M P M, we denote with PA,M,π the
joint probability distribution of all events realized by the execution of the algorithm in
the MDP\R (the presence of p is irrelevant as it does not change across the different
instances):

P
pM,πq,A

“

τ
ź

t“1

ρtpst, at, ht|Ht´1qphtps
1
t|st, atqπ

E
ht

paEt |stq.

where Ht´1 “ ps1, a1, h1, s
1
1, a

E
1 , . . . , st´1, at´1, ht´1, s

1
t´1, a

E
t´1q is the history. Let ı P I. Let

us now move to the KL-divergence between the instances π0 and πı for some ı “ ps˚, h˚q P

J :

DKL
`

PpM0,πq,A,PpMı,πq,A

˘

“ E
pM0,πq,A

«

τ
ÿ

t“1

DKL
`

π0
ht

p¨|stq, π
ı
ht

p¨|stq
˘

ff

ď E
pM0,πq,A

“

N τ
h˚

ps˚q
‰

DKL
`

π0
h˚

p¨|s˚q, πı
h˚

p¨|s˚q
˘

ď log
1

1 ´ πmin

E
pM0,πq,A

“

N τ
h˚

ps˚, a˚q
‰

.

having observed that the transition models differ in ı “ ps˚, h˚q and defined N τ
h˚

ps˚q “
řτ

t“1 1tpst, htq “ ps˚, h˚qu and the last passage is obtained by explicitly computing the
KL-divergence:

DKL
`

π0
h˚

p¨|s˚q, πı
h˚

p¨|s˚q
˘

“
ÿ

aPA
π0
h˚

pa|s˚q log

˜

π0
h˚

pa|s˚q

πı
h˚

pa|s˚q

¸

“ π0
h˚

pa0|s˚q log

˜

π0
h˚

pa0|s˚q

πı
h˚

pa0|s˚q

¸

“ log
1

1 ´ πmin

.

Putting all together, we have:

δ ě
1

4
exp

ˆ

´ log
1

1 ´ πmin

E
pM0,πq,A

“

N τ
h˚

ps˚q
‰

˙

ùñ E
pM0,πq,A

“

N τ
h˚

ps˚q
‰

ě
log 1

4δ

log 1
1´πmin

.

Thus, summing over ps˚, a˚q P J , we have:

E
pM0,πq,A

rτ s ě
ÿ

ps˚,a˚qPJ

E
pM0,πq,A

“

N τ
h˚

ps˚, a˚q
‰

“
ÿ

ps˚,a˚,h˚qPI

pH ´ H ´ 2q2 log 1
4δ

2ϵ2

“ SH
log 1

4δ

log 1
1´πmin

.

The number of states is given by S “ |S| “ S ` 3. Let us first consider the time-
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Input: significance δ P p0, 1q, ϵ target accuracy
t Ð 0, ϵ0 Ð `8

while ϵt ą ϵ do
t Ð t ` SAH
Collect one sample from each ps, a, hq P S ˆ A ˆ JHK
Update ppt and pπE,t according to (7.1)

Update ϵt “ maxps,a,hqPSˆAˆJHK C
t
hps, aq (resp. rC

t

hps, aq)
end while

Algorithm 11: UniformSampling-IRL (US-IRL) for time-inhomogeneous (resp. time-
homogeneous) transition models and expert’s policies.

homogeneous case, i.e., H “ 1:

E
pM0,πq,A

rτ s ě pS ´ 3q
log 1

4δ

log 1
1´πmin

.

For δ ă 1{16, S ě 7, A ě 2, H ě 2, we obtain:

E
pM0,πq,A

rτ s ě
S

4 log 1
1´πmin

log
1

δ
.

For the time-inhomogeneous case, instead, we select H “ H{2, to get:

E
pM0,πq,A

rτ s ě
pS ´ 3qpH{2q

ϵ2
log 1

4δ

log 1
1´πmin

.

For δ ă 1{16, S ě 7, A ě 2, H ě 2, we obtain:

E
pM0,πq,A

rτ s ě
SH

8 log 1
1´πmin

log
1

δ
.

A.2. Algorithm

In this appendix, we extend US-IRL to the expert’s policy estimation under Assump-
tion 1. The pseudocode is reported in Algorithm 11. The interaction protocol follows the
same principles of Algorithm 10, with the only difference that the confidence function,
now, must account for the policy estimation, leading to the following function for every
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ps, a, hq P S ˆ A ˆ JHK:2

C
t

hps, aq :“ 2pH ´ h ` 1q

¨

˝1tnt
hpsqěmaxt1,ξpnt

hpsq,δ{2quu `

d

2β
`

nt
hps, aq, δ{2

˘

nt
hps, aq

˛

‚. (A.2)

where:
ξpn, δq :“

logp2SAHn2{δq

logp1{p1 ´ πminqq
.

It is worth noting that we have distributed the confidence δ equally between the problem
estimating the policy and that of estimating the transition model. The following theorem
provides the sample complexity of US-IRL.

Theorem 19 (Sample Complexity of US-IRL). Let ϵ ą 0 and δ P p0, 1q, under Assump-
tion 1, US-IRL is pϵ, δq-PAC for dG-IRL and with probability at least 1 ´ δ it stops after
τ samples with:

• if the transition model p and the expert’s policy πE are time-inhomogeneous:

τ ď
8H3SA

ϵ2

ˆ

log

ˆ

SAH

δ

˙

` pS ´ 1qC1

˙

` SH`

`
SH

logp1{p1 ´ πminqq

ˆ

log

ˆ

4SAH

δ

˙

` C2

˙

,

where C1 “ logpe{pS ´ 1q ` p8eH2q{ppS ´ 1qϵ2qplogp2SAH{δq ` 4eqq and
C2 “ 2 log

´

logp4SAH{δq`2
logp1{p1´πminqq

¯

.
• if the transition model p and the expert’s policy πE are time-homogeneous:

τ ď
8H2SA

ϵ2

ˆ

log

ˆ

SA

δ

˙

` pS ´ 1qC1

˙

` SH`

`
S

logp1{p1 ´ πminqq

ˆ

log

ˆ

4SA

δ

˙

` C2

˙

,

2As for the transition model, one can adapt the confidence function for the case of stationary policy
in straightforward way:

rC
t

hps, aq :“ 2pH ´ h ` 1q

¨

˝1
tnt

hpsqěmaxt1,rξpntpsq,δ{2quu
`

d

2rβ
`

ntps, aq, δ{2
˘

ntps, aq

˛

‚, (A.1)

where:
rξpn, δq :“

logp2SAn2{δq

logp1{p1 ´ πminqq
.

In principle, one can also consider the case of a time-homogeneous transition model and time-
inhomogeneous expert’s policy. We omit it because it adds nothing to the characteristics of the problem
and of the algorithms.
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where rC1 “ logpe{pS ´ 1q ` p8eH2q{ppS ´ 1qϵ2qplogp2SA{δq ` 4eqq and
rC2 “ 2 log

´

logp4SA{δq`2
logp1{p1´πminqq

¯

.

Before moving to the proof, let us observe that the result matches the rate of the lower
bound of Theorem 18 up to logarithmic terms.

Proof. We make use of the notation of the proof of Theorem 19. We start with the case
in which the transition model is time-inhomogeneous. In addition to the good event E
related to the transition model, we introduce the following one:

Eπ :“

"

@t P N, @ps, a, hq P S ˆ A ˆ JHK :

ˇ

ˇ

ˇ
1πE

h pa|sq“0 ´ 1
pπE,t
h pa|sq“0

ˇ

ˇ

ˇ
ď 1tnt

hpsqěmaxt1,ξpnt
hpsq,δ{2quu

*

,

where πE
h is the true expert’s policy and pπE,t is its estimate via Equation (7.1) at time t.

Thanks to Lemma 4 and Lemma 5, we have that PpE XEπq ě 1´δ. Thus, under the good
event E X Eπ, we apply Theorem 12 to obtain HdGpR, pRτ q ď maxps,a,hqPSˆAˆJHK C

t

hps, aq.
A sufficient condition to make this term ď ϵ is to request the following ones:

max
ps,a,hqPSˆAˆJHK

2pH ´ h ` 1q1tnt
hpsqěmaxt1,ξpnt

hpsq,δ{2quu “ 0,

max
ps,a,hqPSˆAˆJHK

2
?
2pH ´ h ` 1q

d

β
`

nt
hps, aq, δ{2

˘

nt
hps, aq

ď ϵ.

For the first one, we first enforce the condition:

nt
hpsq ě ξpnt

hpsq, δ{2q “
logp4SAHpnt

hq2{δq

logp1{p1 ´ πminqq
“

logp4SAH{δq

logp1{p1 ´ πminqq
`

2 log nt
h

logp1{p1 ´ πminqq
.

Using Lemma 15 of [27] and enforcing nt
hpsq ě 1, we obtain:

nτ
hpsq ď 1 `

1

logp1{p1 ´ πminqq

ˆ

logp4SAH{δq ` 2 log

ˆ

logp4SAH{δq ` 2

logp1{p1 ´ πminqq

˙˙

.

Combining this result with that of Theorem 19 for what concerns the transition model,
we obtain:

τ ď
8H3SA

ϵ2

ˆ

log

ˆ

2SAH

δ

˙

` pS ´ 1q log

ˆ

8eH2

pS ´ 1qϵ2

ˆ

log

ˆ

2SAH

δ

˙

` 4e

˙˙˙

` SH `
SH

logp1{p1 ´ πminqq

ˆ

logp4SAH{δq ` 2 log

ˆ

logp4SAH{δq ` 2

logp1{p1 ´ πminqq

˙˙

.
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Analogous derivations can be carried out for the case of time-homogenous policy using
the good event:

rEπ :“
!

@t P N, @ps, aq P S ˆ A :
ˇ

ˇ1πEpa|sq“0 ´ 1
pπE,tpa|sq“0

ˇ

ˇ ď 1tntpsqěmaxt1,rξpntpsq,δ{2quu

)

,

where rξpn, δq :“ logp2SAn2{δq

logp1{p1´πminqq
. We omit the tedious but straightforward derivation.

Lemma 5. Under Assumption 1, the following statements hold:

• for ξpn, δq :“ logp2SAHn2{δq

logp1{p1´πminqq
, we have that PpEπq ě 1 ´ δ;

• for rξpn, δq :“ logp2SAn2{δq

logp1{p1´πminqq
, we have that PprEπq ě 1 ´ δ.

Proof. Let us start with the first statement. We apply first a union bound and, then,
Lemma 8 to perform the concentration:

PpEc
πq “ P

˜

Dt P N, Dps, a, hq P S ˆ A ˆ JHK :

ˇ

ˇ

ˇ
1πE

h pa|sq“0 ´ 1
pπE,t
h pa|sq“0

ˇ

ˇ

ˇ
ď 1tnt

hpsqąmaxt1,ξpnt
hpsq,δquu

¸

“ P

˜

Dn P N, Dps, a, hq P S ˆ A ˆ JHK :

ˇ

ˇ

ˇ
1πE

h pa|sq“0 ´ 1
pπ
E,rns

h pa|sq“0

ˇ

ˇ

ˇ
ą 1tněmaxt1,ξpn,δquu

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

ÿ

ně0

P

˜

ˇ

ˇ

ˇ
1πE

h pa|sq“0 ´ 1
pπ
E,rns

h pa|sq“0

ˇ

ˇ

ˇ
ď 1tnąmaxt1,ξpn,δquu

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

ÿ

ně1

P

˜

ˇ

ˇ

ˇ
1πE

h pa|sq“0 ´ 1
pπ
E,rns

h pa|sq“0

ˇ

ˇ

ˇ
ď 1tnąmaxt1,ξpn,δquu

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

δ

2SAHn2
“

π2

6

δ

2
ď δ.

where on the first passage we enforced the condition on the time instants in which the
policy estimate changes (i.e., when ps, hq is visited) and we denotes such an estimate as
pπ
E,rns

h . Then, after a union bound, we apply Lemma 8. The proof of the second statement
is analogous having simply observed that the union bound has to be performed over SˆA
only.
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Theorem 20. (Bretagnolle-Huber inequality [32, Theorem 14.2]) Let P and Q be proba-
bility measures on the same measurable space pΩ,Fq, and let A P F be an arbitrary event.
Then,

PpAq ` QpAc
q ě

1

2
exp p´DKLpP,Qqq ,

where Ac “ ΩzA is the complement of A.

Theorem 21. (Fano inequality [18, Proposition 4]) Let P0,P1, . . . ,PM be probability
measures on the same measurable space pΩ,Fq, and let A1, . . . ,AM P F be a partition of
Ω. Then,

1

M

M
ÿ

i“1

PipAc
iq ě 1 ´

1
M

řM
i“1DKLpPi,P0q ´ log 2

logM
,

where Ac “ ΩzA is the complement of A.

Lemma 6. [25, Proposition 1] Let P “ pp1, . . . , pDq be a categorical probability measure on
the support JDK. LetPn “ ppp1, . . . , ppDq be the maximum likelihood estimate of P obtained
with n ě 1 independent samples. Then, for every δ P p0, 1q it holds that:

P pDn ě 1 : nDKL pPn,Pq ą logp1{δq ` pD ´ 1q log pep1 ` n{pD ´ 1qqqq ď δ

Lemma 7. Let ϵ P r0, 1{2s and v P t´ϵ, ϵuD such that
řd

i“1 vi “ 0. Consider the two
categorical distributions P “

`

1
D
, 1
D
, . . . , 1

D

˘

and P “
`

1`v1
D

, 1`v2
D

, . . . , 1`vD
D

˘

. Then, it holds
that:

DKLpP,Qq ď 2ϵ2 and DKLpQ,Pq ď 2ϵ2.

Proof. First of all we recall that since
řM

i“1 vi “ 0, we have |ti P JDK : vi “ ϵu| “ |i P
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JDK : vi “ ´ϵ| “ D{2. Let us compute the KL-divergence DKLpP,Qq:

DKLpP,Qq “

D
ÿ

i“1

1 ` vi
D

log
1`vi
D
1
D

“
ÿ

iPJDK:vi“ϵ

1 ` ϵ

D
logp1 ` ϵq `

ÿ

iPJDK:vi“´ϵ

1 ´ ϵ

D
logp1 ´ ϵq

“
1 ` ϵ

2
logp1 ` ϵq `

1 ´ ϵ

2
logp1 ´ ϵq

“
1

2
logp1 ´ ϵ2q

loooooomoooooon

ď0

`
ϵ

2
logp1 ` ϵq ´

ϵ

2
logp1 ´ ϵq

ď
ϵ2

2
`

ϵ

2

ˆ

1

1 ´ ϵ
´ 1

˙

“ ϵ2
2 ´ ϵ

2p1 ´ ϵq
ď

3

2
ϵ2 ď 2ϵ2.

where we used the inequality logp1 ` xq ď x for x ě 0 and ´ logp1 ´ xq ď 1
1´x

´ 1 for
0 ă x ă 1 and exploited that ϵ ď 1

2
. Let us now move to the second KL-divergence

DKLpQ,Pq:

DKLpQ,Pq “

D
ÿ

i“1

1

D
log

1
D

1`vi
D

“
ÿ

iPJDK:vi“ϵ

1

D
log

1

1 ` ϵ
`

ÿ

iPJDK:vi“´ϵ

1

D
log

1

1 ´ ϵ

“ ´
1

2
logp1 ´ ϵ2q

ď
1

2

ˆ

1

1 ´ ϵ2
´ 1

˙

“
ϵ2

2p1 ´ ϵ2q
ď

2

3
ϵ2 ď 2ϵ2,

where we used the inequality ´ logp1 ´ xq ď 1
1´x

´ 1 for 0 ă x ă 1 and observed that
ϵ ď 1

2
.

Lemma 8. Let P “ pp1, . . . , pDq be a categorical probability measure on the support JDK.
LetPn “ ppp1, . . . , ppDq be the maximum likelihood estimate of P obtained with n ě 1 in-
dependent samples. Then, if pi P t0u Y rpmin, 1s for some pmin P p0, 1s. Then, for every
i P JDK individually, for every δ P p0, 1q, it holds that:

ˇ

ˇ1tpi“0u ´ 1tppi“0u

ˇ

ˇ ď 1#

němax

#

1,
logp 1

δ q
logp 1

1´pmin
q

++.

Proof. Let i P JDK such that pi ą 0 and, thus, 1tpi“0u “ 0. By assumption, it must be
that pi ě pmin. To make a mistake, we must have that 1tppi“0u “ 1, and, thus, ppi “ 0.
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Thus, we compute the probability that no sample i is observed among the n ones:

P

¨

˝

č

jPJnK

Xj ‰ i

˛

‚“
ź

jPJnK

P pXj ‰ iq “ P pX1 ‰ iqn “ p1 ´ piq
n

ď p1 ´ pminq
n,

where we exploited the fact that the random variables Xj are i.i.d.. If n “ 0 the latter
expression is 1. If, instead, n ě 1, by setting the last expression equal to δ, we get:

p1 ´ pminq
n

ď δ ùñ n ě
log

`

1
δ

˘

log
´

1
1´pmin

¯ .

The result follows.

Lemma 9. Let V “ tv P t´1, 1uD :
řD

j“1 vj “ 0u. Then, the D
16

-packing number of V
w.r.t. the metric dpv, v1q “

řD
j“1 |vj ´ v1

j| is lower bounded by 2
D
5 .

Proof. Let us denote the packing number with Mpϵ;V , dq and the covering number with
Npϵ;V , dq. It is well known that Npϵ;V , dq ď Mpϵ;V , dq [19]. Thus, a lower bound
to the covering number is a lower bound to the packing number. Let us consider the
(pseudo)metric d1pv, v1q “

řD{2
j“1 |vj ´ v1

j| that considers the first half of the components
only. Clearly, we have that d1pv, v1q ď dpv, v1q. Therefore, any ϵ-cover w.r.t. dpv, v1q is an ϵ-
cover w.r.t. d1pv, v1q and, consequently, Npϵ;V , d1q ď Npϵ;V , dq. Since the (pseudo)metric
d1 considers only the first half of the components, constructing an ϵ-cover of V w.r.t. d1 is
equivalent to constructing an ϵ-cover of V 1 w.r.t. d1, where V 1 “ t´1, 1uD{2. V 1 considers
the first half of the components of vectors of V , that can be freely chosen, disregarding
the summation constraint.1 Thus, Npϵ;V , d1q “ Npϵ;V 1, d1q. Notice that d1 is now a
proper metric on V 1 “ t´1, 1uD{2. Now, we reduce the problem to constructing cover on
the Hamming space H “ t0, 1uD{2. Indeed, we can always map an pϵ{2q-cover for the
Hamming space H to an ϵ-cover for the space V 1. Specifically, let phlql an pϵ{2q-cover for
the Hamming space, we construct pv1

lql by applying the following transformation:

v1
j “

$

&

%

´1 if hj “ 0

1 if hj “ 1
,

1From an algebraic perspective, V 1 can be considered the quotient set obtained from V by means of
the equivalence relation v „ v1 ðñ vj “ vj1 for all j P JD{2K.
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or, in more convenient way, v1 “ 2h ´ 1. Let v1 P V 1:

min
l

d1
pv1, v1

l,jq “ min
l

D{2
ÿ

j“1

|v1
j ´ v1

l,j| “ 2min
l

D{2
ÿ

j“1

|h1
j ´ h1

l,j| ď ϵ.

The covering number of a Hamming space has been lower bounded in [11] for ϵ P JD{2K
as:

log2Npϵ;H, d1
q ě

D

2
´ log2

ϵ
ÿ

k“0

ˆ

D{2

k

˙

.

We take ϵ “ D{16, and we use the known bound
řk

i“0

`

n
k

˘

ď
`

en
k

˘k:

D{16
ÿ

k“0

ˆ

D{2

k

˙

ď p8eq
D{16.

From, which, we get:

log2Npϵ;H, d1
q ě

D

2
´ log2

ϵ
ÿ

k“0

ˆ

D{2

k

˙

ě
D

2
´

D

16
log2p8eq ě

D

5
.
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